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Key to symbols in this book

●? This symbol means that you may want to discuss a point with your teacher. If 
you are working on your own there are answers in the back of the book. It is 
important, however, that you have a go at answering the questions before looking 
up the answers if you are to understand the mathematics fully.

●  This symbol invites you to join in a discussion about proof. The answers to these 
questions are given in the back of the book.

!  This is a warning sign. It is used where a common mistake, misunderstanding or 
tricky point is being described.

This is the ICT icon. It indicates where you could use a graphic calculator or a 
computer. Graphic calculators and computers are not permitted in any of the 
examinations for the Cambridge International AS and A Level Mathematics 9709 
syllabus, however, so these activities are optional.

This symbol and a dotted line down the right-hand side of the page indicate 
material that you are likely to have met before. You need to be familiar with the 
material before you move on to develop it further.

This symbol and a dotted line down the right-hand side of the page indicate 
material which is beyond the syllabus for the unit but which is included for 
completeness.

vi
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Introduction

This is part of a series of books for the University of Cambridge International 
Examinations syllabus for Cambridge International AS and A Level Mathematics 
9709. It follows on from Pure Mathematics 1 and completes the pure mathematics 
required for AS and A level. The series also contains a book for each of mechanics 
and statistics.

These books are based on the highly successful series for the Mathematics in 
Education and Industry (MEI) syllabus in the UK but they have been redesigned 
for Cambridge international students; where appropriate, new material has been 
written and the exercises contain many past Cambridge examination questions. 
An overview of the units making up the Cambridge international syllabus is given 
in the diagram on the next page.

Throughout the series the emphasis is on understanding the mathematics 
as well as routine calculations. The various exercises provide plenty of scope 
for practising basic techniques; they also contain many typical examination 
questions. 

An important feature of this series is the electronic support. There is an 
accompanying disc containing two types of Personal Tutor presentation: 
examination-style questions, in which the solutions are written out, step by step, 
with an accompanying verbal explanation, and test-yourself questions; these are 
multiple-choice with explanations of the mistakes that lead to the wrong answers 
as well as full solutions for the correct ones. In addition, extensive online support 
is available via the MEI website, www.mei.org.uk.

The books are written on the assumption that students have covered and 
understood the work in the Cambridge IGCSE® syllabus. However, some 
of the early material is designed to provide an overlap and this is designated 
‘Background’. There are also places where the books show how the ideas can be 
taken further or where fundamental underpinning work is explored and such 
work is marked as ‘Extension’.

The original MEI author team would like to thank Sophie Goldie who has carried 
out the extensive task of presenting their work in a suitable form for Cambridge 
international students and for her many original contributions. They would 
also like to thank University of Cambridge International Examinations for their 
detailed advice in preparing the books and for permission to use many past 
examination questions.

Roger Porkess
Series Editor

www.mei.org.uk
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Algebra

No, it [1729] is a very interesting number. It is the smallest number 
expressible as the sum of two cubes in two different ways.

Srinivasa Ramanujan

A brilliant mathematician, Ramanujan was largely self-taught, being too poor to 
afford a university education. He left India at the age of 26 to work with G.H. Hardy 
in Cambridge on number theory, but fell ill in the English climate and died six years 
later in 1920. On one occasion when Hardy visited him in hospital, Ramanujan 
asked about the registration number of the taxi he came in. Hardy replied that it was 
1729, an uninteresting number; Ramanujan’s instant response is quoted above.

The photograph shows the Tamar Railway Bridge. The spans of this bridge, 
drawn to the same horizontal and vertical scales, are illustrated on the graph as 
two curves, one green, the other blue.

●? How would you set about trying to fit equations to these two curves?
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You will already have met quadratic expressions, like x2 � 5x � 6, and solved 
quadratic equations, such as x2 � 5x � 6 " 0. Quadratic expressions have the form 
ax2 � bx � c where x is a variable, a, b and c are constants and a is not equal to 
zero. This work is covered in Pure Mathematics 1 Chapter 1.

An expression of the form ax3 � bx2 � cx � d, which includes a term in x3, is 
called a cubic in x. Examples of cubic expressions are

2x3 � 3x2 � 2x � 11,        3y 3 � 1         and        4z3 � 2z.

Similarly a quartic expression in x, like x4 � 4x3 � 6x2 � 4x � 1, contains a term in 
x4; a quintic expression contains a term in x5 and so on.

All these expressions are called polynomials. The order of a polynomial is the 
highest power of the variable it contains. So a quadratic is a polynomial of  
order 2, a cubic is a polynomial of order 3 and 3x8 � 5x4 � 6x is a polynomial of 
order 8 (an octic).

Notice that a polynomial does not contain terms involving x , 
1
x, etc. Apart from 

the constant term, all the others are multiples of x raised to a positive integer power.

Operations with polynomials

Addition of polynomials

Polynomials are added by adding like terms, for example, you add the coefficients 
of x 3 together (i.e. the numbers multiplying x3), the coefficients of x2 together, 
the coefficients of x together and the numbers together. You may find it easiest to 
set this out in columns.

EXAMPLE 1.1 Add (5x4 � 3x3 � 2x) to (7x4 � 5x3 � 3x2 � 2).

SOLUTION

 5x4 �3x3  �2x 
�� (7x4 �5x3 �3x2  �2)
���������������������������������
 12x4 �2x3 �3x2 �2x �2 

Note

This may alternatively be set out as follows:

(5x4 � 3x3 � 2x) � (7x4 � 5x3 � 3x2 � 2) " (5 � 7)x4 � (�3 � 5)x3 � 3x2 � 2x � 2   

 " 12x4 � 2x3 � 3x2 � 2x � 2

Subtraction of polynomials

Similarly polynomials are subtracted by subtracting like terms.
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EXAMPLE 1.2 Simplify (5x4 � 3x3 � 2x) � (7x4 � 5x3 � 3x2 � 2).

SOLUTION

 5x4 �3x3  �2x 
 � (7x4 �5x3 �3x2  �2)
���������������������������������
 �2x4 �8x3 �3x2 �2x �2

!  Be careful of the signs when subtracting. You may find it easier to change the 
signs on the bottom line and then go on as if you were adding.

Note

This, too, may be set out alternatively, as follows:

(5x4 � 3x3 � 2x) � (7x4 � 5x3 � 3x2 � 2) " (5 � 7)x4 � (�3 � 5)x3 � 3x2 � 2x � 2   

                " �2x4 � 8x3 � 3x2 � 2x � 2

Multiplication of polynomials

When you multiply two polynomials, you multiply each term of the one by each 
term of the other, and all the resulting terms are added. Remember that when 
you multiply powers of x, you add the indices: x5 w x7 " x12.

EXAMPLE 1.3 Multiply (x3 � 3x � 2) by (x2 � 2x � 4).

SOLUTION

Arranging this in columns, so that it looks like an arithmetical long 
multiplication calculation you get:

   x3  �3x �2 
                                                                 w    x2 �2x �4

� ����������������������������
Multiply top line by x2 x5  �3x3 �2x2 
Multiply top line by �2x  �2x4  �6x2 �4x
Multiply top line by  �4   �4x3  �12x �8
� ����������������������������
Add x5 �2x4 �x3 �8x2 �8x �8

Note

Alternatively:

(x3 � 3x � 2) w (x2 � 2x � 4) " x3(x2 � 2x � 4) � 3x(x2 � 2x � 4) � 2(x2 � 2x � 4)
 " x5 � 2x4 � 4x3 � 3x3 � 6x2 � 12x � 2x2 � 4x � 8
 " x5 � 2x4 � (�4 � 3)x3 � (�6 � 2)x2 � (�12 � 4)x � 8
 " x5 � 2x4 � x3 � 8x2 � 8x � 8
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Division of polynomials

Division of polynomials is usually set out rather like arithmetical long division.

EXAMPLE 1.4 Divide 2x3 � 3x2 � x � 6 by x � 2.

SOLUTION

Method 1

   

  

  

Now subtract 2x3 � 4x2 from 2x3 � 3x2, bring down the next term (i.e. x) and 
repeat the method above:

  

       ________

Continuing gives:

  

       ________

                        ______

                                    ______

Thus (2x3 � 3x2 � x � 6) { (x � 2) " (2x2 � x � 3).

Method 2

Alternatively this may be set out as follows if you know that there is no remainder.

Let (2x3 � 3x2 � x � 6) { (x � 2) " ax2 � bx � c

Multiplying both sides by (x � 2) gives

(2x3 � 3x2 � x � 6) " (ax2 � bx � c)(x � 2)

Multiplying out the expression on the right

2x3 � 3x2 � x � 6 } ax3 � (b � 2a)x2 � (c � 2b)x � 2c

Found by dividing 2x3 (the first term in        
2x3 � 3x2 � x � 6) by x (the first term in x � 2).)

2

2 2 3 6

2 4

2

3 2

3 2

x

x x x x

x x

− +
−
– –

2x2(x � 2)

x2 { x

)
2

2 2 3 6

2 4

2

3 2

3 2

x x

x x x x

x x

+
− +

−
– –

x x2 +
x x2 2−

x(x ��2)

)
2 3

2 2 3 6

2 4

2

3 2

3 2

x x

x x x x

x x

+ +
− +

−
– –

x x2 +
x x2 2−

33 6x −
33 6x −

0

The final remainder of 
zero means that  

x � 2 divides exactly 
into 2x3 � 3x2 � x � 6.

The polynomial here must 
be of order 2 because 2x3 { x 

will give an x2 term.

The identity sign is used 
here to emphasise that this 
is an identity and true for 

all values of x.

If the dividend is missing a term,  
leave a blank space. For example,  
write x3 � 2x � 5 as x3           � 2x � 5.
Another way to write it is x3 � 0x2 � 2x � 5.       

This is the answer.
It is called the quotient.
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Comparing coefficients of x3

 2 " a

Comparing coefficients of x2

 �3 " b � 2a
 �3 " b � 4
¡ b " 1

Comparing coefficients of x

 1 " c � 2b
 1 " c � 2
¡  c " 3

Checking the constant term

 �6 " �2c (which agrees with c " 3).

So ax2 � bx � c is 2x2 � x � 3

 i.e. (2x3 � 3x2 � x � 6) { (x � 2) } 2x2 � x � 3.

Method 3

With practice you may be able to do this method ‘by inspection’. The steps in this 
would be as follows.

(2x3 � 3x2 � x � 6) " (x � 2)(2x2             )

" (x � 2)(2x2 � x             )

" (x � 2)(2x2 � x � 3)

" (x � 2)(2x2 � x � 3)

So (2x3 � 3x2 � x � 6) { (x � 2) } 2x2 � x � 3.

A quotient is the result of a division. So, in the example above the quotient is 
2x2 � x � 3.

Needed to give the 2x3 term 
when multiplied by the x.

This product gives –4x2. 
Only –3x2 is needed.

Introducing �x gives �x2 
for this product and so the 

x2 term is correct.

This product gives �2x and 
�x is on the left-hand side.

This �3x product then 
gives the correct x term.

Check that the constant 
term (�6) is correct.
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EXERCISE 1A   1  State the orders of the following polynomials.

(i) x3 � 3x2 � 4x     (ii)  x12       (iii)  2 � 6x2 � 3x7 � 8x5

2 Add (x3 � x2 � 3x � 2) to (x3 � x2 � 3x � 2).

3 Add (x3 � x), (3x2 � 2x � 1) and (x4 � 3x3 � 3x2 � 3x).

4 Subtract (3x2 � 2x � 1) from (x3 � 5x2 � 7x � 8).

5 Subtract (x3 � 4x2 � 8x � 9) from (x3 � 5x2 � 7x � 9).

6 Subtract (x5 � x4 � 2x3 � 2x2 � 4x � 4) from (x5 � x4 � 2x3 � 2x2 � 4x � 4).

7 Multiply (x3 � 3x2 � 3x � 1) by (x � 1). 

8 Multiply (x3 � 2x2 � x � 2) by (x � 2).

9 Multiply (x2 � 2x � 3) by (x2 � 2x � 3).

10 Multiply (x10 � x9 � x8 � x7 � x6 � x5 � x4 � x3 � x2 � x1 � 1) by (x � 1).

11 Simplify (x2 � 1)(x � 1) � (x2 � 1)(x � 1).

12 Simplify (x2 � 1)(x2 � 4) � (x2 � 1)(x2 � 4).

13 Simplify (x � 1)2 � (x � 3)2 � 2(x � 1)(x � 3).

14 Simplify (x2 � 1)(x � 3) � (x2 � 3)(x � 1).

15 Simplify (x2 � 2x � 1)2 � (x � 1)4.

16 Divide (x3 � 3x2 � x � 3) by (x � 1).

17 Find the quotient when (x3 � x2 � 6x) is divided by (x � 2).

18 Divide (2x3 � x2 � 5x � 10) by (x � 2).

19 Find the quotient when (x4 � x2 � 2) is divided by (x � 1).

20 Divide (2x3 � 10x2 � 3x � 15) by (x � 5).

21 Find the quotient when (x4 � 5x3 � 6x2 � 5x  � 15) is divided by (x � 3).

22 Divide (2x4 � 5x3 � 4x 
2 � x) by (2x � 1).

23 Find the quotient when (4x4 � 4x3 � x 
2 � 7x � 4) is divided by (2x � 1).

24 Divide (2x4 � 2x3 � 5x 
2 � 2x � 3) by (x 

2 � 1).

25 Find the quotient when (x4 � 3x3 � 8x 
2 � 27x � 9) is divided by (x 

2 � 9).

26 Divide (x4 � x3 � 4x 
2 � 4x) by (x 

2 � x).

27 Find the quotient when (2x4 � 5x3 � 16x 
2 � 6x) is divided by (2x 

2 � 3x).

28 Divide (x4 � 3x3 � x 
2 � 2) by (x 

2 � x � 1).
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Solution of polynomial equations

You have already met the formula

x b b ac
a

= − ± −2 4
2

for the solution of the quadratic equation ax2 � bx � c " 0.

Unfortunately there is no such simple formula for the solution of a cubic 
equation, or indeed for any higher power polynomial equation. So you have to 
use one (or more) of three possible methods.

 ● Spotting one or more roots.
 ● Finding where the graph of the expression cuts the x axis.
 ● A numerical method.

EXAMPLE 1.5 Solve the equation 4x3 � 8x2 � x � 2 " 0.

SOLUTION

Start by plotting the curve whose equation is y " 4x3 � 8x2 � x � 2. (You may also 
find it helpful at this stage to display it on a graphic calculator or computer.)

x �1   0   1 2   3

y �9 �2 �3 0 35

Figure 1.1 shows that one root is x " 2 and that there are two others. One is 
between x " �1 and x " 0 and the other is between x " 0 and x " 1.

±1�

�

1

±1 2 3 x

1�

2�

3�

��
y

Figure 1.1
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Try x " �–1
2 .

Substituting x " –1
2 in y " 4x3 � 8x2 � x � 2 gives

 y " 4 w (–1
8) � 8 w 1

4  � (–1
2) � 2

 y " 0

So in fact the graph crosses the x axis at x " � 1
2 and this is a root also.

Similarly, substituting x " �1
2 in y " 4x3 � 8x2 � x � 2 gives

 y " 4 w��18  � 8 w�14  � 1
2  � 2

 y " 0

and so the third root is x " 12.

The solution is x " – 1
2, 1

2  or 2.

This example worked out nicely, but many equations do not have roots which are 
whole numbers or simple fractions. In those cases you can find an approximate 
answer by drawing a graph. To be more accurate, you will need to use a numerical 
method, which will allow you to get progressively closer to the answer, homing in 
on it. Such methods are covered in Chapter 6.

The factor theorem

The equation 4x3 � 8x2 � x � 2 " 0 has roots that are whole numbers or fractions. 
This means that it could, in fact, have been factorised.

4x3 � 8x2 � x � 2 " (2x � 1)(2x � 1)(x � 2) " 0

Few polynomial equations can be factorised, but when one can, the solution 
follows immediately.

Since (2x � 1)(2x � 1)(x � 2) " 0

 it follows that either 2x � 1 " 0 ¡ x " – 1
2

 or 2x � 1 " 0 ¡ x " 1
2

 or  x � 2 " 0 ¡ x " 2

and so x " – 1
2 , 1

2  or 2.

This illustrates an important result, known as the factor theorem, which may be 
stated as follows.

If (x � a) is a factor of the polynominal f(x), then f(a) " 0 and x " a is a root of the 
equation f(x) " 0. Conversely if f(a) " 0, then (x � a) is a factor of f(x).
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EXAMPLE 1.6 Given that f(x) " x3 � 6x2 � 11x � 6:

(i) find f(0), f(1), f(2), f(3) and f(4)

(ii) factorise x3 � 6x2 � 11x � 6

(iii) solve the equation x3 � 6x2 � 11x � 6 " 0

(iv) sketch the curve whose equation is f(x) " x3 � 6x2 � 11x � 6.

SOLUTION

(i) f(0) " 03 � 6 w 02 � 11 w 0 � 6 " �6
 f(1) " 13 � 6 w 12 � 11 w 1 � 6 " 0
 f(2) " 23 � 6 w 22 � 11 w 2 � 6 " 0
 f(3) " 33 � 6 w 32 � 11 w 3 � 6 " 0
 f(4) " 43 � 6 w 42 � 11 w 4 � 6 " 6

(ii)  Since f(1), f(2) and f(3) all equal 0, it follows that (x � 1), (x � 2) and (x � 3) 
are all factors. This tells you that

 x3 � 6x2 � 11x � 6 " (x � 1)(x � 2)(x � 3) w constant

  By checking the coefficient of the term in x3, you can see that the constant 
must be 1, and so

 x3 � 6x2 � 11x � 6 " (x � 1)(x � 2)(x � 3)

(iii) x " 1, 2 or 3

(iv) 

In the previous example, all three factors came out of the working, but this will 
not always happen. If not, it is often possible to find one factor (or more) by 
‘spotting’ it, or by sketching the curve. You can then make the job of searching 
for further factors much easier by dividing the polynomial by the factor(s) you 
have found: you will then be dealing with a lower order polynomial.

±�

� 2 31 x

I�x�

Figure 1.2 
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EXAMPLE 1.7 Given that f(x) " x3 � x2 � 3x � 2:

(i) show that (x � 2) is a factor

(ii) solve the equation f(x) " 0.

SOLUTION

(i) To show that (x � 2) is a factor, it is necessary to show that f(2) " 0.

 f(2) " 23 � 22 � 3 w 2 � 2
  " 8 � 4 � 6 � 2
  " 0

 Therefore (x � 2) is a factor of x3 � x2 � 3x � 2.

(ii) Since (x � 2) is a factor you divide f(x) by (x � 2).  

   

                                    _______

                                                  ______

                                                              ______

 So f(x) " 0 becomes (x � 2)(x2 � x � 1) " 0,

� ¡ either x � 2 " 0    or    x2 � x � 1 " 0.

 Using the quadratic formula on x2 � x � 1 " 0 gives 

  

 So the complete solution is x " �1.618, 0.618 or 2.

Spotting a root of a polynomial equation

Most polynomial equations do not have integer (or fraction) solutions. It is only 
a few special cases that work out nicely.

To check whether an integer root exists for any equation, look at the constant 
term. Decide what whole numbers divide into it and test them.

)
x x

x x x x

x x

2

3 2

3 2

1

2 3 2

2

+ −
− − +

−
–

x x2 3−
x x2 2−

− +x 2
− +x 2

0

x = − ± − × × −

= − ±

= −

1 1 4 1 1
2

1 5
2

1 618 0 618 3

( )

. . ( )or to d.p.
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EXAMPLE 1.8 Spot an integer root of the equation x3 � 3x2 � 2x � 6 " 0.

SOLUTION

The constant term is �6 and this is divisible by �1, �1, �2, �2, �3, �3, �6 and �6. 
So the only possible factors are (x ± 1), (x ± 2), (x ± 3) and (x ± 6). This limits 
the search somewhat.

f(1) " �6 No; f(�1) " �12 No;
f(2) " �6 No; f(�2) " �30 No;
f(3) " 0 Yes; f(�3) " �66 No;
f(6) " 114 No; f(�6) " �342 No.

x " 3 is an integer root of the equation.

EXAMPLE 1.9 Is there an integer root of the equation x3 � 3x2 � 2x  � 5 " 0?

SOLUTION

The only possible factors are (x ± 1) and (x ± 5).

f(1) " �5 No; f(�1) " �11 No;
f(5) " 55 No; f(�5) " �215 No.

There is no integer root.

The remainder theorem

Using the long division method, any polynomial can be divided by another 
polynomial of lesser order, but sometimes there will be a remainder.  
Look at (x 3 � 2x 2 � 3x � 7) { (x � 2). 

  

                        _______

                                    ______

                                                  ______

  
You can write this as 

 x3 � 2x2 � 3x � 7 " (x � 2)(x2 � 4x � 5) � 3

At this point it is convenient to call the polynomial x3 � 2x2 � 3x � 7 " f(x). 

) 2
x x

x x x x

x

2

3 2

3

4 5
2 3 7

2

+ +
− + − −

− xx

x

2

24 −−
−

3
4 82

x
x x

5x − 77
5 10x −

3

The quotient is  
x2 � 4x � 5 and the 

remainder is 3.
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So f(x) " (x � 2)(x2 � 4x � 5) � 3. !1    

Substituting x " 2 into both sides of !1   gives f(2) " 3. 

So f(2) is the remainder when f(x) is divided by (x � 2).

This result can be generalised to give the remainder theorem. 
It states that for a polynomial, f(x), 

 f(a) is the remainder when f(x) is divided by (x � a).

 f(x) " (x � a)g(x) � f(a)    (the remainder theorem)

EXAMPLE 1.10 Find the remainder when 2x3 � 3x � 5 is divided by x � 1.

SOLUTION

The remainder is found by substituting x " �1 in 2x3 � 3x � 5.

 2 w (�1)3 � 3 w (�1) � 5
� " �2 � 3 � 5 
� " 6 

So the remainder is 6.

EXAMPLE 1.11 When x2 � 6x � a is divided by x � 3, the remainder is 2. Find the value of a.

SOLUTION

The remainder is found by substituting x " 3 in x2 � 6x � a.

� 32 � 6 w 3 � a " 2
� 9 � 18 � a " 2
� �9 � a " 2
� a " 11

When you are dividing by a linear expression any remainder will be a constant; 
dividing by a quadratic expression may give a linear remainder.

●? A polynomial is divided by another of degree n.

 What can you say about the remainder?
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When dividing by polynomials of order 2 or more, the remainder is usually 
found most easily by actually doing the long division.

EXAMPLE 1.12 Find the remainder when 2x4 � 3x3 � 4 is divided by x2 � 1.

SOLUTION

  

         _____________

                   ___________

                                ____________

  
The remainder is 3x � 6.

!  In a division such as the one in Example 1.12, it is important to keep a separate 
column for each power of x and this means that sometimes it is necessary to leave 
gaps, as in the example above. In arithmetic, zeros are placed in the gaps. For 
example, 2 thousand and 3 is written 2003.

EXERCISE 1B    1 Given that f(x) " x3 � 2x2 � 9x � 18:

(i) find f(�3), f(�2), f(�1), f(0), f(1), f(2) and f(3)

(ii) factorise f(x)

(iii) solve the equation f(x) " 0

(iv) sketch the curve with the equation y " f(x).

2 The polynomial p(x) is given by p(x) " x3 � 4x.

(i) Find the values of p(�3), p(�2), p(�1), p(0), p(1), p(2) and p(3).

(ii) Factorise p(x).

(iii) Solve the equation p(x) " 0.

(iv) Sketch the curve with the equation y " p(x).

3 You are given that f(x) " x3 � 19x � 30.

(i) Calculate f(0) and f(3). Hence write down a factor of f(x).

(ii) Find p and q such that f(x) ! (x � 2)(x2 � px � q).

(iii) Solve the equation x3 � 19x � 30 " 0.

(iv) Without further calculation draw a sketch of y " f(x).
  [MEI]

3

2 3 2

1 2

2

2 4 3

x x

x x x

− −
+ −)

2

+ 4
4x +

− −

2

3 2

2

3 2

x

x x
− −3 33x x

− + +2 3 42x x
− 2 2x − 2

3 6x +



E
xercise 1

B

15

P2 

1

4 (i) Show that x � 3 is a factor of x3 � 5x2 � 2x � 24.
(ii) Solve the equation x3 � 5x2 � 2x � 24 " 0.

(iii) Sketch the curve with the equation y " x3 � 5x2 � 2x � 24.

5  (i)  Show that x " 2 is a root of the equation x4 � 5x2 � 2x " 0 and write down 
another integer root.

(ii) Find the other two roots of the equation x4 � 5x2 � 2x " 0.

(iii) Sketch the curve with the equation y " x4 � 5x2 � 2x.

6 (i)  The polynomial p(x) " x3 � 6x2 � 9x � k has a factor x � 4. 
Find the value of k.

(ii) Find the other factors of the polynomial.

(iii) Sketch the curve with the equation y " p(x).

7 The diagram shows the curve with 
the equation y " (x � a)(x � b)2 
where a and b are positive 
integers.

(i) Write down the values of a 
and b, and also of c, given that 
the curve crosses the y axis at 
(0, c).

(ii) Solve the equation (x � a)(x � b)2 " c using the values of a, b and c 
you found in part (i).

8 The function f(x) is given by f(x) " x4 � 3x2 � 4 for real values of x.

(i) By treating f(x) as a quadratic in x2, factorise it in the form 
(x2  � …)(x2  � …).

(ii) Complete the factorisation as far as possible.

(iii) How many real roots has the equation f(x) " 0? What are they?

9 (i) Show that x � 2 is not a factor of 2x3 � 5x2 � 7x � 3.
(ii) Find the quotient and the remainder when 2x3 � 5x2 � 7x � 3 

is divided by x � 2.

10 The equation f(x) " x3 � 4x2 � x � 6 " 0 has three integer roots.

(i) List the eight values of a for which it is sensible to check whether f(a) " 0 
and check each of them.

(ii) Solve f(x) " 0.

11 Factorise, as far as possible, the following expressions.

(i) x3 � x2 � 4x � 4 given that (x � 1) is a factor.

(ii) x3 � 1 given that (x � 1) is a factor.

(iii) x3 � x � 10 given that (x � 2) is a factor.

(iv) x3 � x2 � x � 6 given that (x � 2) is a factor.

� 1±1±2 2 x

y

F



A
lg

eb
ra

16

P2 

1

12   (i)    Show that neither x " 1 nor x " �1 is a root of x4 � 2x3 � 3x2 � 8 " 0.
(ii) Find the quotient and the remainder when x4 � 2x3 � 3x2 � 8 is divided by 

 (a) (x � 1)         (b) (x � 1)         (c) (x2 � 1).

13 When 2x3 � 3x2 � kx � 6 is divided by x � 1 the remainder is 7. 
Find the value of k.

14 When x3 � px2 � p2x � 36 is divided by x � 3 the remainder is 21. 
Find a possible value of p.

15 When x3 � ax2 ��bx � 8 is divided by x � 3 the remainder is 2 and when it is 
divided by x � 1 the remainder is �2. 
Find a and b and hence obtain the remainder on dividing by x � 2.

16 When f(x) " 2x3 � ax2 � bx � 6 is divided by x � 1 there is no remainder and 
when f(x) is divided by x � 1 the remainder is 10. 
Find a and b and hence solve the equation f(x) " 0.

17 The cubic polynomial ax3 � bx2 � 3x � 2, where a and b are constants, is 
denoted by p(x). It is given that (x � 1) and (x � 2) are factors of p(x).

(i) Find the values of a and b.

(ii) When a and b have these values, find the other linear factor of p(x).
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 June 2006]

18 The polynomial 2x3 � 7x2 � ax � b, where a and b are constants, is denoted by 
p(x). It is given that (x � 1) is a factor of p(x), and that when p(x) is divided 
by (x � 2) the remainder is 5. Find the values of a and b.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 June 2008]

19 The polynomial 2x3 � x2 � ax � 6, where a is a constant, is denoted by p(x). 
It is given that (x � 2) is a factor of p(x).

(i) Find the value of a.

(ii) When a has this value, factorise p(x) completely.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 November 2008]

20 The polynomial x3 + ax2 + bx + 6, where a and b are constants, is denoted by 
p(x). It is given that (x – 2) is a factor of p(x), and that when p(x) is divided 
by (x – 1) the remainder is 4.

(i) Find the values of a and b.

(ii) When a and b have these values, find the other two linear factors of p(x).

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2009]

21 The polynomial x3 � 2x � a, where a is a constant, is denoted by p(x). 
It is given that (x � 2) is a factor of p(x).

(i) Find the value of a.

(ii) When a has this value, find the quadratic factor of p(x).

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2007]
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The modulus function

Look at the graph of y " f(x), where f(x) " x.

The function f(x) is positive when x is positive and negative when x is negative.

Now look at the graph of y " g(x), where g(x) " a x a. 

The function g(x) is called the modulus of x. g(x) always takes the positive 
numerical value of x. For example, when x " �2, g(x) " 2, so g(x) is always 
positive. The modulus is also called the magnitude of the quantity.

Another way of writing the modulus function g(x) is  

g(x) " x  for x ! 0
g(x) " �x  for x " 0.

●? What is the value of g(3) and g(�3)?

 What is the value of a�3 � 3 a, a 3 � 3 a, a�3 a � a 3 a�and a 3 a�� a��3 a?

The graph of y " g(x) can be obtained from the graph of y " f(x) by replacing 
values where f(x) is negative by the equivalent positive values. This is the 
equivalent of reflecting that part of the line in the x axis.

y   I�x�   x

x

y

2

Figure 1.3 

y   g�x�   _x_

x

y

2

Figure 1.4 
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EXAMPLE 1.13 Sketch the graphs of the following on separate axes.

(i) y " 1 � x

(ii) y " a 1 � x a

(iii) y " 2 � a 1 � x a

SOLUTION

(i) y " 1 � x is the straight line through (0, 1) and (1, 0).

(ii) y " a 1 � x a is obtained by reflecting the part of the line for x # 1 in the x axis.

(iii) y " 2 � a 1 � x a is obtained from the previous graph by applying the 

 translation 
0
2

⎛
⎝⎜

⎞
⎠⎟ .

y   1 ± x

x2

1

1

y

Figure 1.5 

y   _1 ± x_

x2

1

1

y

Figure 1.6 

y   2 � _1 ± x_

x2

3

1

y

�1� 2�

Figure 1.7 
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Inequalities involving the modulus sign

You will often meet inequalities involving the modulus sign. 

●? Look back at the graph of y " a x a in figure 1.4.

 How does this show that a x a " 2 is equivalent to �2 " x " 2?

Here is a summary of some useful rules.

Rule Example

a x a " a �x a a 3 a " a �3 a

a a � b a " a b � a a a 8 � 5 a " a 5 � 8 a " �3

a x a2 " x2 a �3 a2 " (�3)2

a a a " a b a � a2 " b2 a �3 a  " a 3 a  � (�3)2 " 32

a x a $ a � �a $ x $ a a x a $ 3 � �3 $ x $ 3

a x a # a � x " �a  or x # a a x a # 3 � x " �3 or x # 3

EXAMPLE 1.14 Solve the following.

(i) a  x � 3 a  $ 4

(ii) a  2x � 1 a  # 9

(iii) 5 � a  x � 2 a  # 1

SOLUTION

(i) a x � 3 a $ 4 �  �4 $ x � 3 $ 4
� � �� �7 $ x $ 1

(ii) a 2x � 1 a  # 9 � 2x  � 1 " �9 or 2x � 1 # 9 
  � 2x " �8 or 2x # 10
  � x " �4 or x # 5  

(iii) 5 � a x � 2 a  # 1 � 4 # a x � 2 a 
  � a x � 2 a " 4
  � �4 " x � 2 " 4
� � � �2 " x " 6

Note

The solution to part (ii) represents two separate intervals on the number line, so 

cannot be written as a single inequality.
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EXAMPLE 1.15 Express the inequality �2 " x " 6 in the form a x � a a  " b, where a and b are to 
be found.

SOLUTION

a x � a a  " b � �b " x � a " b
� � a � b " x " a � b

Comparing this with �2 " x " 6 gives  

 a � b  " �2
 a � b " 6.

Solving these simultaneously gives a " 2, b " 4, so a x � 2 a " 4.

EXAMPLE 1.16 Solve 2x " a x � 3 a.

SOLUTION 

It helps to sketch a graph of y " 2x and y " a x � 3 a.

 

 

You can see that the graph of y " 2x is below y " a x � 3 a for x " c.

You can find the critical region by solving 2x " �(x � 3).

2x  " �(x � 3)
2x  " �x � 3
3x  " 3
   x " 1

y   2x

y   _x ± 3_

x2

3

3F

y

Figure 1.8 

c is at the intersection 
of the lines y = 2x and 

y " �(x � 3).
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EXAMPLE 1.17 (i) Solve a 2x � 1 a�" a x � 2 a.
(ii) Solve a 2x � 1 a�" a x � 2 a.

SOLUTION 

(i)  Sketching a graph of y "  a 2x � 1 a and y " a x � 2 a shows that the equation is 
true for two values of x.

You can find these values by solving a 2x � 1 a�" a x � 2 a.
One method is to use the fact that a a a��"��a b a�� a2 " b2.

                                    a 2x � 1 a�" a x � 2 a
Squaring:                  (2x � 1)2 " (x � 2)2

Expanding:    4x2 � 4x � 1 " x2 � 4x � 4

Rearranging:                3x2 � 3 " 0

¡�����������������������������������������������������������������x2 � 1 " 0

Factorising:     (x � 1)(x � 1) " 0

So the solution is x "  –1 or x " 1.

(ii)  When  a 2x � 1 a�" a x � 2 a, y " a 2x � 1 a (drawn in red) is below y " a x � 2 a   
(drawn in blue) on the graph. So the solution to the inequality is �1 " x " 1.

EXERCISE 1C  1  Solve the following equations.

(i) a x � 4 a " 5 (ii) a x � 3 a " 4
(iii) a 3 � x a " 4 (iv) a 4x � 1 a " 7
(v) a 2x � 1 a " 5 (vi) a 8 � 2x a " 6
(vii) a 2x � 1 a " a x � 5 a (vii) a 4x � 1 a " a 9 � x a
(ix) a 3x � 2 a " a 4 � x a 

2 Solve the following inequalities.

(i) a x � 3 a " 5 (ii) a x � 2 a $ 2
(iii) a x � 5 a # 6 (iv) a x � 1 a ! 2
(v) a 2x � 3 a " 7 (vi) a 3x � 2 a $ 4

y   _2x ± 1_

y   _x ± 2_

x2

1

2

2

y

Figure 1.9 
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3 Express each of the following inequalities in the form a x � a a " b, where 
a and b are to be found.  

(i) �1 " x " 3 (ii) 2 " x " 8

(iii) �2 " x " 4 (iv) �1 " x " 6

(v) 9.9 " x " 10.1 (vi) 0.5 " x " 7.5

4 Sketch each of the following graphs on a separate set of axes.

(i) y " a x � 2 a (ii) y " a 2x � 3 a
(iii) y " a x � 2 a � 2 (iv) y " a x a � 1

(v) y " a 2x � 5 a � 4 (vi) y " 3 � a x � 2 a

5 Solve the following inequalities.

(i) a x � 3 a " a x � 4 a� (ii) a x � 5 a # a x � 2 a
(iii) a 2x � 1 a��$ a 2x � 3 a� (iv) a 2x a��$ a x � 3 a
(v) a 2x a��# a x � 3 a� (vi) a 2x � 5 a��! a x � 1 a

6 Solve the inequality a x a��# a 3x � 2 a.
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q1 June 2005]

7 Solve the inequality 2x��# a x � 1 a.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2006]

8 Given that a is a positive constant, solve the inequality a x � 3a a��# a x � a a.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 November 2005]

KEY POINTS

1 A polynomial in x has terms in positive integer powers of x and may also 
have a constant term.

2 The order of a polynomial in x is the highest power of x which appears in 
the polynomial.

3 The factor theorem states that if (x � a) is a factor of a polynomial f(x) then 
f(a) " 0 and x " a is a root of the equation f(x) " 0. 
Conversely if f(a) " 0, then x � a is a factor of f(x).

4 The remainder theorem states that f(a) is the remainder when the 
polynomial f(x) is divided by (x � a).

5 The modulus of x, written a x a , means the positive value of x.

6 The modulus function is

� a x a  " x, for x ! 0
� a x a  " �x,  for x " 0.



Lo
g

arith
m

s

23

P2 

2

Logarithms and  
exponentials

Normally speaking it may be said that the forces of a capitalist 
society, if left unchecked, tend to make the rich richer and the poor 
poorer and thus increase the gap between them.

Jawaharlal Nehru

This cube has volume of 500 cm3. 

●? How would you calculate the length of its side, correct to the nearest millimetre, 
without using the cube root button on your calculator?

Logarithms    You can think of multiplication in two ways. Look, for example, at 81 w 243, 
which is  34 w 35. You can work out the product using the numbers or you can 
work it out by adding the powers of a common base – in this case base 3.

Multiplying the numbers: 81 w 243 " 19 683

Adding the powers of the base 3: 4 � 5 " 9 and 39 " 19 683

Another name for a power is a logarithm. Since 81 " 34, you can say that the 
logarithm to the base 3 of 81 is 4. The word logarithm is often abbreviated to log 
and the statement would be written log3 81 " 4. In general: 

y " ax ¡ loga y " x

Notice that since 34 " 81, 3log381 " 81. This is an example of a general result: 

alogax " x

23

2
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EXAMPLE 2.1 (i) Find the logarithm to the base 2 of each of these numbers.

 (a) 64 (b) 1
2  (c) 1 (d) 2

(ii) Show that 2log264 " 64.

SOLUTION

(i) (a) 64 " 26 and so log2 64 " 6

 (b) 1
2 " 2–1 and so log2 1

2 " �1

 (c) 1 " 20 and so log2 1 " 0

 (d) 2 " 2
1
2  and so log2 2 " 12  

(ii) 2log264 " 26 " 64 as required

Logarithms to the base 10

Any positive number can be expressed as a power of 10. Before the days 
of calculators, logarithms to the base 10 were used extensively as an aid to 
calculation. There is no need for that nowadays but the logarithm function 
remains an important part of mathematics, particularly the natural logarithm 
which you will meet later in this chapter. Base 10 logarithms continue to be a 
standard feature on calculators, and occur in some specialised contexts: the pH 
value of a liquid, for example, is a measure of its acidity or alkalinity and is given 
by log10(1/the concentration of H� ions).

Since 1000 " 103, log10 1000 " 3

Similarly log10 100 " 2

 log10 10 " 1

 log10 1 " 0

 log10 
1

10( ) " log10 (10�1) " –1

 log10 
1

100( ) " log10 (10�2) " –2

and so on.

INVESTIGATION

There are several everyday situations in which quantities are measured on  
logarithmic scales.

What are the relationships between the following?

(i) An earthquake of intensity 7 on the Richter Scale and one of intensity 8.
(ii) The frequency of the musical note middle C and that of the C above it.
(iii) The intensity of an 85 dB noise level and one of 86 dB.
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The laws of logarithms

The laws of logarithms follow from those for indices.

Multiplication

Writing xy " x w y in the form of powers (or logarithms) to the base a and using 
the result that x " a logax gives  

 a loga xy "  a loga x w a loga y

and so a loga xy " a logax�logay.

Consequently  loga xy " loga x  � loga y.

Division

Similarly  loga 
x
y

⎛
⎝⎜

⎞
⎠⎟  

 " logax – logay.

Power zero

Since  a0 " 1, loga1 " 0.

However, it is more usual to state such laws without reference to the base of the 
logarithms except where necessary, and this convention is adopted in the key 
points at the end of this chapter. As well as the laws given above, others may be 
derived from them, as follows.

Indices

Since xn " x w x w x w … w x  (n times)
it follows that log xn " log x � log x � log x � … � log x  (n times),
and so log xn " n log x.

This result is also true for non-integer values of n and is particularly useful  
because it allows you to solve equations in which the unknown quantity is the 
power, as in the next example.

EXAMPLE 2.2 Solve the equation  2n " 1000.

SOLUTION

 2n " 1000

Taking logarithms to the base 10 of both sides (since these can be found on a 
calculator),

 log10 (2n) " log10 1000
 n log10 2 " log10 1000

 n " 
log

log
10

10

1000
2

 " 9.97 to 3 significant figures
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Note

Most calculators just have ‘log’ and not ‘log10’ on their keys.

EXAMPLE 2.3 A geRmetric seTXeQce begiQs ��2� 1� �� ��� �
The kth term is the first term in the sequence that is greater than 500 000.
Find the value of k.

SOLUTION  

The kth term of a geometric sequence is given by ak = a w rk�1.

In this case a = 0.2 and r = 5, so: 

	

0 2 5 500000

5 500000
0 2

5 2500000

1

1

1

.

.

× −

−

−

k

k

k

!

!

!

Taking logarithms to the base 10 of both sides:

        log10 5
k�1 ! log10 2 500 000

¡ (k � 1)log10 5 ! log10 2 500 000 

¡               k � 1 ! 
log

log
10

10

2500000
5  

¡               k � 1 ! 9.15 
¡                     k  ! 10.15 

Since k is an integer, then k = 11.
So the 11th term is the first term greater than 500 000.

Check :  10th term " 0.2 w 510�1 " 390 625 (" 500 000) 9
 11th term " 0.2 w 511�1 " 1 953 125 (! 500 000) 9

Roots

A similar line of reasoning leads to the conclusion that:

log x n xn " 1 log

The logic runs as follows:

Since xn  w xn  w xn   w … w  xn  " x

                            n times

it follows that n log xn  " log x

and so log x n xn " 1 log

{
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The logarithm of a number to its own base

Since 51 " 5, it follows that log5 5 " 1.

Clearly the same is true for any number, and in general,

loga a " 1

Reciprocals

Another useful result is that, for any base,

log 1
y

⎛
⎝⎜

⎞
⎠⎟  " –log y

This is a direct consequence of the division law

loga 
x
y

⎛
⎝⎜

⎞
⎠⎟  " loga x – loga y

with x set equal to 1:

log 1
y

⎛
⎝⎜

⎞
⎠⎟  " log 1 – log y

 " 0 – log y

 " – log y

If the number y is greater than 1, it follows that 1y
⎛
⎝⎜

⎞
⎠⎟ lies between 0 and 1 and log 1

y
⎛
⎝⎜

⎞
⎠⎟  

is negative. So for any base (!1), the logarithm of a number between 0 and 1 is 

negative. You saw an example of this on page 24: log10
1

10( ) " –1.

The result log 1
y

⎛
⎝⎜

⎞
⎠⎟

 
" –log y is often useful in simplifying expressions involving 

logarithms.

ACTIVITY 2.1 Draw the graph of y " log2 x, taking values of x like 1
8, 1

4, 12, 1, 2, 4, 8, 16.

 Use your graph to estimate the value of 2 .

Graphs of logarithms

Whatever the value, a, of the base (a !1), the graph of y " loga x has the same 
general shape (shown in figure 2.1).

2

1

D1

y   lRga x

x

y

Figure 2.1 
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The graph has the following properties.

 ●  The curve crosses the x axis at (1, 0).

 ●  The curve only exists for positive values of x.

 ● The line x " 0 is an asymptote and for values of x between 0 and 1 the curve 
lies below the x axis.

 ● There is no limit to the height of the curve for large values of x, but its gradient 
progressively decreases.

 ● The curve passes through the point (a , 1).

●? Each of the points above can be justified by work that you have already covered. 
How?

Exponential functions

The relationship y " loga x may be rewritten as x " ay, and so the graph of x " ay 
is exactly the same as that of y " loga x. Interchanging x and y has the effect of 
reflecting the graph in the line y " x, and changing the relationship into y " ax, 
as shown in figure 2.2.

The function y " ax, x �!  is called an exponential function. Notice that while 
the domain of y " ax is all real numbers (x �!), the range is strictly the positive 
real numbers. y " ax is the inverse of the logarithm function so the domain of the 
logarithm function is strictly the positive real numbers and its range is all real 
numbers. Remember the effect of applying a function followed by it inverse is to 
bring you back to where you started.

Thus loga (ax) " x  and a(loga x) " x.

2

1

D

D1

y   lRga x

y   xy   D�
x

x

y

Figure 2.2 



E
xercise 2

A

29

P2 

2

EXERCISE 2A 1  2x " 32  �  x " log2 32

 Write similar logarithmic equivalents of these equations. In each case find also 
the value of x, using your knowledge of indices and not using your calculator.

(i) 3x " 9 (ii) 4x " 64 

(iii) 2x " 1
4 (iv) 5x " 15   

(v) 7x " 1 (vi) 16x " 2

2 Write the equivalent of these equations in exponential form. Without using 
your calculator, find also the value of y in each case.

(i) y " log3 9 (ii) y " log5 125 

(iii) y " log2 16 (iv) y " log6 1 

(v) y " log64 8 (vi) y " log5 
1
25( ) 

3 Write down the values of the following without using a calculator. Use your 
calculator to check your answers for those questions which use base 10.

(i) log10 10 000 (ii) log10 
1

10000( )  
(iii) log10 10  (iv) log10 1 

(v) log3 81 (vi) log3 1
81( ) 

(vii) log3 27  (viii) log3

 
34

(ix) log4 2 (x) log5 1
125( ) 

4 Write the following expressions in the form log x where x is a number.

(i) log 5 � log 2 (ii) log 6 – log 3 

(iii) 2 log 6 (iv) –log 7 

(v) 1
2 log 9   (vi) 1

4 log 16 � log 2

(vii) log 5 � 3 log 2 – log 10 (viii) log 12 – 2 log 2 – log 9

(ix) 1
2 log 16 2 1

2+ ( )log   (x) 2 log 4 � log 9 – 12 log 144

5 Express the following in terms of log x.

(i) log x2 (ii) log x5 – 2 log x

(iii) log x  � (iv) log x
3
2 � log x3   

(v) 3 log x  � log x3 (vi) log ( x  )5

6 Solve these inequalities.

(i) 2x " 128 (ii) 3x � 5 # 32

(iii) 4x � 6 # 70 (iv) 0.6x " 0.8

(v) 0.4x � 0.1 # 0.3 (vi) 0.5x � 0.2 $ 1  

(vii) 2 $ 5x " 8 (viii) 1 $ 7x " 5 

(ix)  a 2x � 4 a " 2 (x) a 5x � 7 a " 4
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7   Express the following as a single logarithm.

 2 log10 x – log10 7

 Hence solve

 2 log10 x – log10 7 " log10 63.

8 Use logarithms to the base 10 to solve the following equations.

(i) 2x " 1 000 000   (ii) 2x " 0.001  

(iii) 1.08x " 2 (iv) 1.1x " 100  

(v) 0.99x " 0.000 001

9 A geometric sequence has first term 5 and common ratio 7.  
The kth term is 28 824 005.

   Use logarithms to find the value of k.

10 Find how many terms there are in these geometric sequences.

(i) –1, 2, –4, 8, …, –16 777 216

(ii) 0.1, 0.3, 0.9, 2.7, …, 4 304 672.1

11 (i) Solve the inequality a y � 5 a " 1.
(ii) Hence solve the inequality a 3x � 5 a " 1, giving 3 significant figures in 

your answer. 
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 November 2007]

12 Given that x " 4(3�y), express y in terms of x.
  [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 June 2006]

13 Using the substitution u " 3x, or otherwise, solve, correct to 3 significant 
figures, the equation

  3x " 2 � 3�x.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2007]

Modelling curves

When you obtain experimental data, you are often hoping to establish a 
mathematical relationship between the variables in question. Should the data 
fall on a straight line, you can do this easily because you know that a straight line 
with gradient m and intercept c has equation y " mx � c.
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EXAMPLE 2.4 In an experiment the temperature θ (in °C) was measured at different times t (in 
seconds), in the early stages of a chemical reaction.  
The results are shown in the table below.

t 20 40 60 80 100 120

θ 16.3 20.4 24.2 28.5 32.0 36.3

(i) Plot a graph of θ against t.

(ii) What is the relationship between θ and t?

SOLUTION

(i) 

(ii)  Figure 2.3 shows that the points lie reasonably close to a straight line and so 
it is possible to estimate its gradient and intercept.

 Intercept: c " 12.3

 Gradient: m "  36 3 16 3
120 20

. .�
�  " 0.2

 In this case the equation is not y " mx � c but θ " mt � c , and so is given by

 θ " 0.2t � 12.3

It is often the case, however, that your results do not end up lying on a straight 
line but on a curve, so that this straightforward technique cannot be applied. The 
appropriate use of logarithms can convert some curved graphs into straight lines. 
This is the case if the relationship has one of two forms, y " kxn or y " kax.

1201008060400 20

10

15

20

25

30

35

40

t (seconds)

Figure 2.3 
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The techniques used in these two cases are illustrated in the following examples. 
In theory, logarithms to any base may be used, but in practice you would only  
use those available on your calculator: logarithms to the base 10 and natural 
logarithms. The base of natural logarithms is a number, 2.718 28…, and is 
denoted by e. In the next section you will see how this apparently unnatural 
number arises naturally; for the moment what is important is that you can apply 
the techniques using base 10.

Relationships of the form y " kxn

EXAMPLE 2.5 A water pipe is going to be laid between two points and an investigation is carried 
out as to how, for a given pressure difference, the rate of flow R litres per second 
varies with the diameter of the pipe d cm. The following data are collected.

d 1 2 3 5 10

R 0.02 0.32 1.62 12.53 199.80

It is suspected that the relationship between R and d may be of the form R " kd n 
where k is a constant.

(i)  Explain how a graph of log d against log R tells you whether this is a good 
model for the relationship.

(ii) Make out a table of values of log10 d against log10 R and plot these on a graph.
(iii) If appropriate, use your graph to estimate the values of n and k.

SOLUTION

(i) If the relationship is of the form R " kd n, then taking logarithms gives

  log R " log k � log d n

 or log R " n log d � log k.

This is in the form y " mx � c as n and log k are constants (so can replace m 
and c) and log R and log d are variables (so can replace y and x). 

log R " n log d � log k

n n n n

y " m x � c

So log R = n log d + log k is the equation of a straight line.

Consequently if the graph of log R against log d is a straight line, the model  
R " kd n is appropriate for the relationship and n is given by the gradient of 
the graph. The value of k is found from the intercept, log k, of the graph with 
the vertical axis.

 log10k " intercept ¡�k " 10intercept



M
o

d
ellin

g
 cu

rves

33

P2 

2

(ii)  Working to 2 decimal places (you would find it hard to draw the graph to 
greater accuracy) the logarithmic data are as follows.

log10 d 0 0.30 0.48 0.70 1.00

log10 R –1.70 –0.49 0.21 1.10 2.30

(iii)  In this case the graph in figure 2.4 is indeed a straight line, with gradient 4 
and intercept –1.70, so n " 4 and k " 10–1.70 " 0.020 (to 2 significant figures).

  The proposed equation linking R and d is a good model for their 
relationship, and may be written as:

 R " 0.02d4

Exponential relationships

EXAMPLE 2.6 The temperature in °C, θ, of a cup of coffee at time t minutes after it is made is 
recorded as follows.

t 2 4 6 8 10 12

θ 81 70 61 52 45 38

(i) Plot the graph of θ against t.

(ii)  Show how it is possible, by drawing a suitable graph, to test whether the 
relationship between θ and t is of the form θ " kat, where k and a are constants.

(iii) Carry out the procedure.

–2

–1

1

2

3

log10  R

log10  d
1.00.80.6

0.4
0

0.2 1.2

Figure 2.4 

The techniques used in these two cases are illustrated in the following examples. 
In theory, logarithms to any base may be used, but in practice you would only  
use those available on your calculator: logarithms to the base 10 and natural 
logarithms. The base of natural logarithms is a number, 2.718 28…, and is 
denoted by e. In the next section you will see how this apparently unnatural 
number arises naturally; for the moment what is important is that you can apply 
the techniques using base 10.

Relationships of the form y " kxn

EXAMPLE 2.5 A water pipe is going to be laid between two points and an investigation is carried 
out as to how, for a given pressure difference, the rate of flow R litres per second 
varies with the diameter of the pipe d cm. The following data are collected.

d 1 2 3 5 10

R 0.02 0.32 1.62 12.53 199.80

It is suspected that the relationship between R and d may be of the form R " kd n 
where k is a constant.

(i)  Explain how a graph of log d against log R tells you whether this is a good 
model for the relationship.

(ii) Make out a table of values of log10 d against log10 R and plot these on a graph.
(iii) If appropriate, use your graph to estimate the values of n and k.

SOLUTION

(i) If the relationship is of the form R " kd n, then taking logarithms gives

  log R " log k � log d n

 or log R " n log d � log k.

This is in the form y " mx � c as n and log k are constants (so can replace m 
and c) and log R and log d are variables (so can replace y and x). 

log R " n log d � log k

n n n n

y " m x � c

So log R = n log d + log k is the equation of a straight line.

Consequently if the graph of log R against log d is a straight line, the model  
R " kd n is appropriate for the relationship and n is given by the gradient of 
the graph. The value of k is found from the intercept, log k, of the graph with 
the vertical axis.

 log10k " intercept ¡�k " 10intercept
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SOLUTION

(i) 

(ii) If the relationship is of the form θ " kat, taking logarithms of both sides gives

  log θ " log k � log at

 or log θ " t log a � log k.

  This is in the form y " mx � c as log a and log k are constants (so can replace 
m and c) and log θ and t are variable (so can replace y and x). 

log θ " log a t � log k

n n n n

y " m x � c

 So log θ = t log a + log k is the equation of a straight line.

  Consequently if the graph of log θ against t is a straight line, the model                     
θ " kat is appropriate for the relationship, and log a is given by the gradient 
of the graph. The value of a is therefore found as a " 10gradient. Similarly, the 
value of k is found from the intercept, log10 k, of the line with the vertical 
axis: k " 10intercept. 

(iii) The table gives values of log10 θ for the given values of t.

t 2 4 6 8 10 12

log10 θ 1.908 1.845 1.785 1.716 1.653 1.580

 The graph of log10 θ against t  is as shown in figure 2.6.

12108640 2

30

50

70

90

t (minutes)
14

Figure 2.5 
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 The graph is indeed a straight line so the proposed model is appropriate.
 The gradient is –0.033 and so a " 10– 0.033 " 0.927.
 The intercept is 1.974 and so k " 101.974 " 94.2.

 The relationship between θ and t is given by:

  θ " 94.2 w 0.927t

Note

Because the base of the exponential function, 0.927, is less than 1, the function’s 

value decreases rather than increases with t.

EXERCISE 2B   1  The planet Saturn has many moons. The table below gives the mean radius 
of orbit and the time taken to complete one orbit for five of the best-known  
of them.

Moon Tethys Dione Rhea Titan Iapetus

Radius R (w 105 km) 2.9 3.8 5.3 12.2 35.6

Period T (days) 1.9 2.7 4.5 15.9 79.3

 It is believed that the relationship between R and T is of the form R " kT n.

(i) How can this be tested by plotting log R against log T ?
(ii) Make out a table of values of log R and log T and draw the graph.
(iii) Use your graph to estimate the values of k and n.

 In 1980 a Voyager spacecraft photographed several previously unknown 
moons of Saturn. One of these, named 1980 S.27, has a mean orbital radius  
of 1.4 w 10 5 km.

(iv) Estimate how many days it takes this moon to orbit Saturn.

12108640 2

1.5

1.7

1.9

1.6

1.8

2.0
1.974log10  θ

t
14

Figure 2.6
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2  The table below shows the area, A cm2, occupied by a patch of mould at time 
t days since measurements were started.

t 0 1 2 3 4 5

A 0.9 1.3 1.8 2.5 3.5 5.2

     It is believed that A may be modelled by a relationship of the form A " kbt.

(i) Show that the model may be written as log A " tlog b � log k.

(ii) What graph must be plotted to test this model?

(iii) Plot the graph and use it to estimate the values of b and k.

(iv) (a)  Estimate the time when the area of mould was 2 cm2.

 (b) Estimate the area of the mould after 3.5 days.

(v) How is this sort of growth pattern described?

3 The inhabitants of an island are worried about the rate of deforestation taking 
place. A research worker uses records over the last 200 years to estimate the 
number of trees at different dates. 

 It is suggested that the number of trees N has been decreasing exponentially 
with the number of years, t, since 1930, so that N may be modelled by 
the equation

  N " kat

 where k and a are constants.

(i) Show that the model may be written as log N " t log a � log k.

 The diagram shows the graph of log N against t.

(ii) Estimate the values of k and a.

 What is the significance of k?

6.2

6.4

6.6

6

5.8

0 20 40 60 80 100

log N

t
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4  The time after a train leaves a station is recorded in minutes as t and the 
distance that it has travelled in metres as s. It is suggested that the relationship 
between s and t is of the form s " kt n where k and n are constants.
(i) Show that the graph of log s against log t produces a straight line.

 The diagram shows the graph of log s against log t.

(ii) Estimate the values of k and n.

(iii) Estimate how far the train travelled in its first 100 seconds.

(iv) Explain why you would be wrong to use your results to estimate the 
distance the train has travelled after 10 minutes.

5 The variables t and A satisfy the equation A = kb t, where b and k are constants. 
(i)  Show that the graph of log A against t produces a straight line.

 The graph of log A against t passes through the points (0, 0.2) and (4, 0.75).

(ii) Find the values of b and k.

6 All but one of the following pairs of readings satisfy, to 3 significant figures, a 
formula of the type y " A w xB.

x 1.51 2.13 3.50 4.62 5.07 7.21

y 2.09 2.75 4.09 5.10 6.21 7.28

Find the values of A and B, explaining your method. If the values of x are correct, 
state which value of y appears to be wrong and estimate what the value should be.

  [MEI]

–0.4 –0.2 0 0.2 0.6
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7  An experimenter takes observations of a quantity y for various values of a 
variable x. He wishes to test whether these observations conform to a formula 
y " A w x B and, if so, to find the values of the constants A and B.

 Take logarithms of both sides of the formula. Use the result to explain what he 
should do, what will happen if there is no relationship, and if there is one, how 
to find A and B.

  Carry this out accurately on graph paper for the observations in the table, and 
record clearly the resulting formula if there is one.

x 4 7 10 13 20

y 3 3.97 4.74 5.41 6.71

8 It is believed that the relationship between the variables x and y  is of the form 
y " Ax n. In an experiment the data in the table are obtained.

x 3 6 10 15 20

y 10.4 29.4 63.2 116.2 178.19

In order to estimate the constants A and n, log10y is plotted against log10x.

(i) Draw the graph of log10y against log10x.

(ii) Explain and justify how the shape of your graph enables you to decide 
whether the relationship is indeed of the form y " Ax n.

(iii) Estimate the values of A and n.
 [MEI]

9 In a spectacular experiment on cell growth the following data were obtained, 
where N is the number of cells at a time t minutes after the start of the growth.

t 1.5 2.7 3.4 8.1 10

N 9 19 32 820 3100

 At t " 10 a chemical was introduced which killed off the culture.

  The relationship between N and t was thought to be modelled by N " ab t, 
where a and b are constants.

(i) Show that the relationship is equivalent to log N " t log b � log a.

(ii) Plot the values of log N against t and say how they confirm the supposition 
that the relationship is of the form N " abt.

(iii) Find the values of a and b.

(iv) If  the growth had not been stopped at t " 10 and had continued according 
to your model, how many cells would there have been after 20 minutes?

 [MEI]
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10 It is believed that two quantities, z and d, are connected by a relationship 
of the form z " kd n, where k and n are constants, provided that d does not 
exceed some fixed (but unknown) value, D.

 An experiment produced the following data.

d 780 810 870 930 990 1050 1110 1170

z 2.1 2.6 3.2 4.0 4.8 5.6 5.9 6.1

(i) Explain why, if z " kd n, then plotting log10z against log10d should 
produce a straight-line graph.

(ii) Draw up a table and plot the values of log10z against log10d.

(iii) Use these points to suggest a value for D.

(iv) It is known that, for d " D, n is a whole number. 
Use your graph to find the value of n. 
Show also that k ~ 5 w 10–9.

(v) Use your value for n and the estimate k " 5 w 10–9 to find the value of 
d for which z " 3.0.

 [MEI]

11  The variables x and y satisfy the relation 3y " 4x �2.

(i) By taking logarithms, show that the graph of y against x is a straight line. 
Find the exact value of the gradient of this line.

(ii) Calculate the x co-ordinate of the point of intersection of this line with 
the line y = 2x, giving your answer correct to 2 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 June 2007]

The natural logarithm function

The shaded region in figure 2.7 is bounded by the x axis, the lines x " 1 and x " 3, 

and the curve y " 1x . The area of this region may be represented by µ
3

1

1
x  dx. 

x2 1

1
x

3

y

y  

Figure 2.7
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●? Explain why you cannot apply the rule

µkxn dx " kx
n

n�

�
1

1
 � c

 to this integral.

However, the area in the diagram clearly has a definite value, and so we need to 
find ways to express and calculate it.

INVESTIGATION

Estimate, using numerical integration (for example by dividing the area up into a 
number of strips), the areas represented by these integrals.

(i)  µ
3

1

1
x  dx (ii) µ

2

1

1
x  dx (iii) µ

6

1

1
x  dx

What relationship can you see between your answers?

The area under the curve y " 1x  between x " 1 and x " a, that is µ
a

1

1
x  dx, depends 

on the value a. For every value of a (greater than 1) there is a definite value of the 
area. Consequently, the area is a function of a.

To investigate this function you need to give it a name, say L, so that L(a) is the 
area from 1 to a and L(x) is the area from 1 to x. Then look at the properties of L(x) 
to see if its behaviour is like that of any other function with which you are familiar.

The investigation you have just done should have suggested to you that

µ
3

1

1
x  dx � µ

2

1

1
x  dx " µ

6

1

1
x  dx .

This can now be written as

L(3) � L(2) " L(6).

This suggests a possible law, that

L(a) � L(b) " L(ab).

At this stage this is just a conjecture, based on one particular example. To prove 
it, you need to take the general case and this is done in the activity below. (At  
first reading you may prefer to leave the activity, accepting that the result can  
be proved.)
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ACTIVITY 2.2 Prove that L(a) � L(b) " L(ab), by following the steps below.

●  (i)     Explain, with the aid of a diagram, why

L(a) � µ
ab

a

1
x  dx " L(ab).

(ii) Now call x " az, so that dx can be replaced by a dz. Show that

µ
ab

a

1
x  dx " µ

b

1

1
z  dz .

Explain why  µ
b

1

1
z  dz " L(b). 

(iii) Use the results from parts (i) and (ii) to show that

L(a) � L(b) " L(ab).

What function has this property? For all logarithms

log(a) � log(b) " log(ab).

Could it be that this is a logarithmic function?

ACTIVITY 2.3 Satisfy yourself that the function has the following properties of logarithms. 

(i) L(1) " 0  

(ii) L(a) – L(b) " L
a
b( )  

(iii) L(an) " nL(a)

The base of the logarithm function L(x)

Having accepted that L(x) is indeed a logarithmic function (for x > 0), the 
remaining problem is to find the base of the logarithm. By convention this is 
denoted by the letter e. A further property of logarithms is that for any base p

logpp " 1   (p ! 1).

So to find the base e, you need to find the point such that the area L(e) under the 
graph is 1. See figure 2.8.

You have already estimated the value of L(2) to be about 0.7 and that of L(3) to 
be about 1.1 so the value of e is between 2 and 3.

x2 1 e

y

Figure 2.8

Notice that the limits of the left-hand integral, ab and a, are 
values for x but those for the right-hand integral, b and 1, 

are values for z. So, to find the new limits for the right-hand 
integral, you should find z when x " a (the lower limit) and 

when x " ab (the upper limit). Remember az " x.
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ACTIVITY 2.4 You will need a calculator with an area-finding facility, or other suitable 
technology, to do this. If you do not have this, read on.

Use the fact that µ
e

1

1
x  dx " 1 to find the value of e, knowing that it lies between 2 

and 3, to 2 decimal places.

The value of e is given to 9 decimal places in the key points on page 50. Like π, 
e is a number which occurs naturally within mathematics. It is irrational: when 
written as a decimal, it never terminates and has no recurring pattern.

The function L(x) is thus the logarithm of x to the base e, loge x. This is often 
called the natural logarithm of x , and written as ln x.

Values of x between 0 and 1

So far it has been assumed that the domain of the function ln x is the real 
numbers greater than 1 (x ��!, x # 1). However, the domain of ln x also includes 
values of x between 0 and 1. As an example of a value of x between 0 and 1, look 
at ln 

1
2 .

Since ln 
a
b( ) " ln a – ln b

¡ ln 1
2( ) " ln 1 – ln 2 " –ln 2  (since ln 1 " 0)

In the same way, you can show that for any value of x between 0 and 1, the value 
of ln x is negative.

When the value of x is very close to zero, the value of ln x is a large negative 
number.

ln 1
1000( ) " –ln 1000 "  –6.9

ln 
1

1000000( ) "  –ln 1 000 000 " –13.8

So as x q 0, ln x q�–h�(for positive values of x).

The graph of the natural logarithm function

The graph of the natural logarithm function (shown in figure 2.9) has the 
characteristic shape of all logarithmic functions and like other such functions it 
is only defined for x ! 0. The value of ln x increases without limit, but ever more 
slowly: it has been described as ‘the slowest way to get to infinity’.

12

y   lQ x

x

y

Figure 2.9
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Historical note  Logarithms were discovered independently by John Napier (1550–1617), who lived 

at Merchiston Castle in Edinburgh, and Jolst Bürgi (1552–1632) from Switzerland. 

It is generally believed that Napier had the idea first, and so he is credited with 

their discovery. Natural logarithms are also called Naperian logarithms but there is 

no basis for this since Napier’s logarithms were definitely not the same as natural 

logarithms. Napier was deeply involved in the political and religious events of his 

day and mathematics and science were little more than hobbies for him. He was a 

man of remarkable ingenuity and imagination and also drew plans for war chariots 

that look very like modern tanks, and for submarines.

The exponential function

Making x the subject of y " ln x, using 
the theory of logarithms you obtain  
x " ey.

Interchanging x and y, which has the 
effect of reflecting the graph in the line  
y " x, gives the exponential function 
y " ex.

The graphs of the natural logarithm 
function and its inverse are shown in  
figure 2.10.

You saw in Pure Mathematics 1 Chapter 4 that reflecting in the line y " x gives an 
inverse function, so it follows that ex and ln x are each the inverse of the other.

Notice that eln x " x, using the definition of logarithms, and ln(ex) " x ln e " x.

Although the function ex is called the exponential function, in fact any function 
of the form ax is exponential. Figure 2.11 shows several exponential curves.

The exponential function y " ex increases at an ever-increasing rate. This is 
described as exponential growth.

2

y   lQ x

y   x

y   H�x

x

y

Figure 2.10

2
y   ���x

y   1x   1

y   1��x
y   2xy   3x

y   H�x

x

y

Figure 2.11
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By contrast, the graph of y " e–x, shown in figure 2.12, approaches the x axis ever 
more slowly as x increases. This is called exponential decay.

You will meet ex and ln x again later in this book. In Chapter 4 you learn how to 
differentiate these functions and in Chapter 5 you learn how to integrate them. In 
this secion you focus on practical applications which require you to use the In

key on your calculator.

EXAMPLE 2.7 The number, N, of insects in a colony is given by N " 2000 e0.1t where t is the 
number of days after observations have begun.

(i) Sketch the graph of N against t.
(ii) What is the population of the colony after 20 days?
(iii) How long does it take the colony to reach a population of 10 000?

SOLUTION

(i)

 

(ii) When t " 20,  N " 2000 e0.1 w 20 " 14 778

 The population is 14 778 insects.

(iii) When N " 10 000, 10 000 " 2000 e0.1t

  5 " e0.1t

 Taking natural logarithms of both sides,

  ln 5 " ln(e0.1t)
  ln 5 " 0.1t
 and so t " 10 ln 5 
� � t " 16.09… 

 It takes just over 16 days for the population to reach 10 000.

2

1

y   H�±x

x

y

Figure 2.12

When t = 0, N = 2000e0 " 2000

2

2���

1   2��� e��1t

W

1

Figure 2.13

Remember  
ln(ex) " x.
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EXAMPLE 2.8 The radioactive mass, M  grams in a lump of material is given by M " 25e–0.0012t 
where t is the time in seconds since the first observation.

(i) Sketch the graph of M against t.
(ii) What is the initial size of the mass?
(iii) What is the mass after 1 hour?
(iv)  The half-life of a radioactive substance is the time it takes to decay to half of 

its mass. What is the half-life of this material?

SOLUTION

(i) 

(ii) When t " 0,  M " 25e0

           M " 25

 The initial mass is 25 g.

(iii) After 1 hour, t " 3600
             M " 25e–0.0012 w 3600

  M " 0.3324...

 The mass after 1 hour is 0.33 g (to 2 decimal places).

(iv) The initial mass is 25 g, so after one half-life,

M "  
1
2  w 25 " 12.5 g

 At this point the value of t is given by 

12.5 " 25e–0.0012t

����¡   0.5 " e–0.0012t

 Taking logarithms of both sides:

  ln 0.5 " ln e–0.0012t

  ln 0.5 " –0.0012t

� ¡ t " 
ln .

– .
0 5

0 0012
 

  t " 577.6 (to 1 decimal place).

  The half-life is 577.6 seconds. (This is just under 10 minutes,   
so the substance is highly radioactive.)

2

2�

W

0

Figure 2.14
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EXAMPLE 2.9 Make p the subject of ln(p) – ln(1 – p) " t.

SOLUTION

ln
p

p1 –
⎛
⎝

⎞
⎠  " t         

Writing both sides as powers of e gives

 e
ln

–
p

p1
⎛
⎝⎜

⎞
⎠⎟  " et

¡� p
p1 –   " et

 p " et(1 – p)

 p " et – pet

 p � pet " et

 p(1 � et) " et

 p " e
e

t

t1 �

EXAMPLE 2.10 Solve these equations.

(i) ln (x – 4) " ln x – 4
(ii) e2x � ex " 6

SOLUTION 

(i)  ln (x � 4) " ln x � 4
 ¡ x � 4 " eln x�4

  x � 4 " elnx e�4

  x � 4 " x e�4

Rearrange to get all the x terms on one side:

 x – x e�4 " 4
 x(l � e�4) " 4

 x "�� 4
1 4� �e

   

So  x " 4.07

Using log a – log b = log ( a–b )

Remember eln x = x
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(ii) e2x � ex " 6 is a quadratic equation in ex. 

 Substituting u " ex:

 u2 � u " 6

So  u2 � u � 6 " 0

Factorising:  (u � 2)(u � 3) " 0

So u " 2 or u " �3.

Since u " ex then ex " 2 or ex " �3.

ex " �3 has no solution.

ex " 2 ¡ x " ln 2 

So  x " 0.693

EXERCISE 2C 1 Make x the subject of ln x – ln x0 " kt.

2 Make t the subject of s " s0e–kt.

3 Make p the subject of ln p " –0.02t.  

4 Make x the subject of y – 5 " (y0 – 5)ex.

5 Solve these equations.

(i) ln(3 – x) " 4 � ln x

(ii) ln(x � 5) " 5 � ln x

(iii) ln(2 – x) " 2 � ln x

(iv) ex = 4
ex

(v) e2x � 8ex � 16 " 0

(vi) e2x � ex " 12

6 A colony of humans settles on a previously uninhabited planet. After t years, 
their population, P, is given by P " 100e0.05t.

(i) Sketch the graph of P against t.

(ii) How many settlers land on the planet initially?

(iii) What is the population after 50 years?

(iv) How long does it take the population to reach 1 million?
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7 The height h metres of a species of pine tree t years after planting is modelled by 
the equation h " 20 – 19 w 0.9t.

(i) What is the height of the trees when they are planted?

(ii) Calculate the height of the trees after 2 years, and the time taken for the 
height to reach 10 metres.

 The relationship between the market value $y of the timber from the tree and 
the height h metres of the tree is modelled by the equation y " ahb, where a 
and b are constants. 

 The diagram shows the graph of ln y plotted against ln h.

(iii) Use the graph to calculate the values of a and b.

(iv) Calculate how long it takes to grow trees worth $100.
 [MEI, adapted]

8 It is given that ln(y � 5) � ln y " 2 ln x. Express y in terms of x, in a form not 
involving logarithms.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 November 2009]

9 Given that (1.25)x " (2.5)y, use logarithms to find the value of 
x
y

 
correct to 

3 significant figures.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q1 June 2009]

10 Solve, correct to 3 significant figures, the equation

ex � e2x " e3x.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2008]

0

1

2

3

4

5

–1

–2

0.5 1 1.5 2 2.5 ln h

ln y
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11 The variables x and y satisfy the equation y " A(b–x), where A and b are 
constants. The graph of ln y against x is a straight line passing through the 
points (0, 1.3) and (1.6, 0.9), as shown in the diagram. Find the values of A 
and b, correct to 2 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 November 2008]

12 Solve the equation ln(2 � e�x) " 2, giving your answer correct to 2 decimal 
places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 June 2009]

13 Two variable quantities x and y are related by the equation y = Axn, where A and 
n are constants. The diagram shows the result of plotting ln y against ln x for four 
pairs of values of x and y. Use the diagram to estimate the values of A and n.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 November 2005]

x2

ln y

��� 1�3�

�1��� ����

2

1

0 1 2 3

ln y

ln x
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KEY POINTS

1 A function of the form ax  is described as exponential.

2 y " loga x � ay " x.

3 Logarithms to any base

 Multiplication: log xy " log x � log y

 Division: log x
y

⎛
⎝⎜

⎞
⎠⎟  " log x � log y

 Logarithm of 1: log 1 " 0

 Powers: log xn " n log x

 Reciprocals: log 1
y

⎛
⎝⎜

⎞
⎠⎟  " �log y

 Roots: log � xn  " 1n  
log x

 Logarithm to its own base: loga a " 1

4 Logarithms may be used to discover the relationship between the variables 
in two types of situation.

y " kx n  ���log y " log k � n log x

Plot log y against log x : this relationship gives a straight line where n is the 
gradient and log k is the intercept.

y " ka x  ���log y " log k � x log a 

Plot log y against x : this relationship gives a straight line where log a is the 
gradient and log k is the intercept.

5  µ 1
x  

dx " loge| x | � c.

6 logex is called the natural logarithm of x and denoted by ln x.

7 e " 2.718 281 828 4… is the base of natural logarithms.

8 ex and ln x are inverse functions: eln
 
x " x  and ln(ex) " x.
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Trigonometry

Music, when soft voices die,
Vibrates in the memory –

P.B. Shelley

●? Both of these photographs show forms of waves. In each case, estimate the 
wavelength and the amplitude in metres (see figure 3.1).

 Use your measurements to suggest, for each curve, values of a and b which would 
make y " a sin bx a suitable model for the curve.

51

3

2

D

±D

U
E

amSlitXde

y   D siQ Ex

x

y

ZaveleQgth

2U
E

3U
E

Figure 3.1
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Reciprocal trigonometrical functions

As well as the three main trigonometrical functions, there are three more which 
are commonly used. These are their reciprocals – cosecant (cosec), secant (sec) 
and cotangent (cot), defined by

    cosec θ " 1
sinθ ;        sec θ " 1

cosθ ;       cot θ " 1
tan

cos
sinθ

θ
θ

=( ) .

Each of these is undefined for certain values of θ. For example, cosec θ is 
undefined for θ " 0°, 180°, 360°, … since sin θ is zero for these values of θ.

Figure 3.2 shows the graphs of these functions. Notice how all three of the 
functions have asymptotes at intervals of 180s. Each of the graphs shows one 
of the main trigonometrical functions as a red line and the related reciprocal 
function as a blue line. 

–360º –180º 0 180º 360º
–1

1

y

x
y = sinx

y = cosecx

–360º –180º 0 180º 360º
–1

1

y

x

y = cosx

y = secx

–1

1

y

x360º180º–180º–360º 0

y = tanx

y = cotx

Figure 3.2



R
ecip

ro
cal trig

o
n

o
m

etrical fu
n

ctio
n

s

53

P2 

3

Using the definitions of the reciprocal functions two alternative trigonometrical 
forms of Pythagoras’ theorem can be obtained.

(i) sin2 θ + cos2 θ ≡ 1

Dividing both sides by cos2 θ:  
sin
cos

cos
cos cos

2

2

2

2 2
1θ

θ
θ
θ θ

+ ≡

 ¡ tan2 θ + 1 } sec2 θ.

This identity is sometimes used in mechanics.

(ii) sin2 θ + cos2 θ ≡ 1

Dividing both sides by sin2 θ: sin
sin

cos
sin sin

2

2

2

2 2
1θ

θ
θ
θ θ

+ ≡

 ¡ 1 + cot2 θ } cosec2 θ.

Questions concerning reciprocal functions are usually most easily solved by 
considering the related function, as in the following examples. 

EXAMPLE 3.1 Find cosec 120s leaving your answer in surd form.

SOLUTION

cosec 120s " 1
120sin s

 " 1 ÷ 3
2

 " 
2

3

EXAMPLE 3.2 Find values of θ in the interval 0s ! θ ! 360s for which sec2 θ " 4 + 2 tan θ.

SOLUTION

First you need to obtain an equation containing only one trigonometrical function. 

 sec2 θ " 4 + 2 tan θ

¡ tan2 θ + 1 " 4 + 2 tan θ

¡ tan2 θ – 2 tan θ – 3 " 0

¡ (tan θ – 3)(tan θ + 1) " 0

¡ tan θ " 3 or tan θ " –1

tan θ " 3 ¡       θ " 71.6s      (calculator)

  or θ " 71.6s + 180s " 251.6s      (see figure 3.3, overleaf)
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tan θ " –1      ¡      θ " –45s      (not in the required range)

 or θ " –45s + 180s " 135s      (see figure 3.3)

 or θ " 135s + 180s " 315s

The values of θ are 71.6s, 135s, 251.6s, 315s.

EXERCISE 3A 1  Solve the following equations for 0s ! x ! 360s.

(i) cosec x " 1 (ii) sec x " 2 (iii) cot x " 4

(iv) sec x " –3 (v) cot x " –1 (vi) cosec x " –2

2 Find the following giving your answers as fractions or in surd form.  
You should not need your calculator.

(i) cot 135s (ii) sec 150s (iii) cosec 240s
(iv) sec 210s (v) cot 270s (vi) cosec 225s

3 In triangle ABC, angle A " 90° and sec B " 2.

(i) Find the angles B and C.

(ii) Find tan B.

(iii) Show that 1 + tan2 B " sec2 B.

4 In triangle LMN, angle M " 90° and cot N " 1.

(i) Find the angles L and N.

(ii) Find sec L, cosec L, and tan L.

(iii) Show that 1 + tan2 L " sec2 L.

–1

y

θ

360º180º0

3

y = tanθ

Figure 3.3
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5  Malini is 1.5 m tall. 
At 8 pm one evening her shadow is 6 m long. 
Given that the angle of elevation of the sun at that moment is α

(i) show that cot α " 4

(ii) find α.

6 (i) For what values of α, where 0s ! α ! 360s, are sec α, cosec α and cot α all 
positive?

(ii) Are there any values of α for which sec α, cosec α and cot α are all negative?

 Explain your answer.

(iii) Are there any values of α for which sec α, cosec α and cot α are all equal?

 Explain your answer.

7 Solve the following equations for 0s ! x ! 360s.

(i) cos x " sec x (ii) cosec x " sec x  

(iii) 2 sin x " 3 cot x (iv) cosec2 x + cot2 x " 2

(v) 3 sec2 x  – 10 tan x " 0 (vi) 1 + cot2 x " 2 tan2 x

Compound-angle formulae

The photographs at the start of this chapter show just two of the countless 
examples of waves and oscillations that are part of the world around us.

Because such phenomena are modelled by trigonometrical (and especially sine 
and cosine) functions, trigonometry has an importance in mathematics far 
beyond its origins in right-angled triangles.

ACTIVITY 3.1 Find an acute angle θ so that sin(θ + 60°) " cos(θ – 60°).

Hint: Try drawing graphs and searching for a numerical solution.

You should be able to find the solution using either of these methods, but 
replacing 60° by, for example, 35° would make both of these methods rather 
tedious. In this chapter you will meet some formulae which help you to solve 
such equations more efficiently.

!  It is tempting to think that sin(θ + 60°) should equal sin θ + sin 60°, but this 
is not so, as you can see by substituting a numerical value of θ. For example, 
putting θ " 30° gives sin(θ + 60°) " 1, but sin θ + sin 60° ~ 1.366.
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To find an expression for sin(θ + 60°), you would use the compound-angle formula

sin(θ + φ) " sin θ cos φ + cos  θ sin φ.

This is proved below in the case when θ and φ are acute angles. It is, however, 
true for all values of the angles. It is an identity. 

 ●  As you work through this proof make a list of all the results you are assuming.

Using the trigonometrical formula for the area of a triangle (see figure 3.4):

        area ABC " area ADC + area DBC

1
2  
ab sin(θ + φ) " 1

2  
bh sin θ + 1

2  
ah sin φ

¡   ab sin(θ + φ) " ab sin θ cos φ + ab cos θ sin φ

which gives

       sin(θ + φ) " sin θ cos φ + cos θ sin φ !1  

This is the first of the compound-angle formulae (or expansions), and it can be 
used to prove several more. These are true for all values of θ and φ.

Replacing φ by –φ in !1   gives

 sin(θ – φ) " sin θ cos(–φ) + cos θ sin(–φ)

¡ sin(θ – φ) " sin θ cos φ – cos θ sin φ !2  

θ φ

K
E

A
'

C

%

D

Figure 3.4

h " a cos φ
from "DBC

h " b cos θ
from "ADC

cos(– φ) " cos φ sin(– φ) " –sin φ
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ACTIVITY 3.2 Derive the rest of these formulae.

(i)  To find an expansion for cos(θ – φ) replace θ by (90° – θ) in the expansion of 
sin(θ + φ).

 Hint: sin(90° – θ) " cos θ and cos(90° – θ) " sin θ

(ii)  To find an expansion for cos(θ + φ) replace φ by (–φ) in the expansion of 
cos(θ – φ).

(iii)  To find an expansion for tan(θ + φ), write tan(θ + φ) " 
sin
cos

θ φ
θ φ
+( )
+( ).

Hint: After using the expansions of sin(θ + φ) and cos(θ + φ), divide the 
numerator and the denominator of the resulting fraction by cos θ cos φ to 
give an expansion in terms of tan θ and tan φ.

(iv) To find an expansion for tan(θ – φ) in terms of tan θ and tan φ, replace φ by 
(–φ) in the expansion of tan(θ + φ).

 ●  Are your results valid for all values of θ and φ? 

 Test your results with θ " 60°, φ " 30°.

The four results obtained in Activity 3.2, together with the two previous results, 
form the set of compound-angle formulae.

sin(θ + φ) " sin θ cos φ + cos θ sin φ

sin(θ – φ) " sin θ cos φ – cos θ sin φ

cos(θ + φ) " cos θ cos φ – sin θ sin φ

cos(θ – φ) " cos θ cos φ + sin θ sin φ

tan(θ + φ) " 
tan

tan tan
θ φ

θ φ
+ tan

1 �
 (θ + φ) ≠  90°, 270°, ...

tan(θ – φ) " tan
tan tan
θ φ

θ φ
– tan

1 �
 (θ – φ)  ≠ 90°, 270°, ...

You are now in a position to solve the earlier problem more easily. To find an 
acute angle θ such that sin(θ + 60°) " cos(θ – 60°), you expand each side using 
the compound-angle formulae.

sin(θ + 60°) " sin θ cos 60° + cos θ sin 60°

� " 1
2

3
2

sin +θ θcos
  

!1  

cos(θ – 60°) "� cos θ cos 60° + sin θ sin 60°    

� " 1
2

3
2

cos +θ θsin   !2
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From !1   and !2 

1
2

3
2

1
2

3
2

sin cos cos sinθ θ θ θ+ = +  

  sin cos cos sinθ θ θ θ+ = +3 3

Collect like terms:

¡ 3 1 3 1– cos – sin( ) = ( )θ θ

             cos θ " sin θ

Divide by cos θ: 1 " tan θ
  θ " 45°

Since an acute angle was required, this is the only root.

Uses of the compound-angle formulae

You have already seen compound-angle formulae used in solving a 
trigonometrical equation and this is quite a common application of them. 
However, their significance goes well beyond that since they form the basis for a 
number of important techniques. Those covered in this book are as follows.

 ● The derivation of double-angle formulae
 The derivation and uses of these are covered on pages 61 to 63.

 ● The addition of different sine and cosine functions
 This is covered on pages 66 to 70. It is included here because the basic 

wave form is a sine curve. It has many applications, for example in applied 
mathematics, physics and chemistry.

 ● Calculus of trigonometrical functions
 This is covered in Chapters 4 and 5 and also in Chapter 8 if you are studying 

Pure Mathematics 3. Proofs of the results depend on using either the compound-
angle formulae or the factor formulae which are derived from them.

You will see from this that the compound-angle formulae are important in the 
development of the subject. Some people learn them by heart, others think it is 
safer to look them up when they are needed. Whichever policy you adopt, you 
should understand these formulae and recognise their form. Without that you 
will be unable to do the next example, which uses one of them in reverse.

This gives an equation in one  
trigonometrical ratio.
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EXAMPLE 3.3 Simplify cos θ cos 3θ – sin θ sin 3θ.

SOLUTION

The formula which has the same pattern of cos cos – sin sin is 

cos(θ + φ) " cos θ cos φ – sin θ sin φ 

Using this, and replacing φ by 3θ, gives

cos θ cos 3θ – sin θ sin 3θ " cos(θ + 3θ)
 " cos 4θ

EXERCISE 3B   1  Use the compound-angle formulae to write the following as surds.

(i) sin 75° " sin(45° + 30°) (ii) cos 135° " cos(90° + 45°)

(iii) tan 15° " tan(45° – 30°) (iv) tan 75° " tan(45° + 30°)

2 Expand each of the following expressions.

(i) sin(θ + 45°) (ii) cos(θ – 30°) (iii) sin(60° – θ) 

(iv) cos(2θ + 45°) (v) tan(θ + 45°) (vi) tan(θ – 45°)

3 Simplify each of the following expressions.

(i) sin 2θ cos φ – cos 2θ sin θ 

(ii) cos φ cos 7φ – sin φ sin 7φ
(iii) sin 120° cos 60° + cos 120° sin 60° 

(iv) cos θ cos θ – sin θ sin θ

4 Solve the following equations for values of θ in the range 0° ! θ ! 180°.

(i) cos(60° + θ) " sin θ 

(ii) sin(45° – θ) " cos θ
(iii) tan(45° + θ) " tan(45° – θ) 

(iv) 2sin θ " 3 cos(θ – 60°)

(v) sin θ " cos(θ + 120°)

5 Solve the following equations for values of θ in the range 0 ! θ ! π.
(When the range is given in radians, the solutions should be in radians, using 
multiples of π where appropriate.)

(i) sin cosθ θ+( ) =π
4  

(ii) 2
3 2

cos – cosθ θπ π( ) = +( )  
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6  Calculators are not to be used in this question.
The diagram shows three points L(–2, 1), M(0, 2) and N(3, –2) joined to form 
a triangle. The angles α and β and the point P are shown in the diagram.

(i) Show that sin α " 
2

5  
and write down the value of cos α.

                                          

(ii) Find the values of sin β and cos β.

(iii) Show that sin #LMN " 
11

5 5
.

                                                

(iv) Show that tan #LNM " 11
27

.

[MEI]

7 (i) Show that the equation

sin(x � 30°) " 2 cos(x � 60°)

can be written in the form

(3�3)sin x " cos x.

(ii) Hence solve the equation

sin(x � 30°) " 2cos(x � 60°),

for �180° ! x ! 180°.
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 November 2008]

y

xO

α
β

M(0, 2)

N(3, –2)

L(–2, 1)

P
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8 (i) Show that the equation

tan(45° � x) � tan x " 2

 can be written in the form

tan2x � 2 tan x ��1 " 0.

(ii) Hence solve the equation

tan(45° � x) � tan x " 2,

 giving all solutions in the interval 0° ! x ! 180°.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 November 2007]

  9  The angles α and β lie in the interval 0° " x " 180°, and are such that

tan α " 2 tan β and tan(α � β) " 3.

 Find the possible values of α and β.
 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q4 November 2009]

10 (i) Show that the equation tan(30° � θ) " 2 tan(60° � θ) can be written in 
the form

tan2 θ � (6�3) tan θ � 5 " 0.

(ii) Hence, or otherwise, solve the equation

tan(30° � θ) = 2 tan(60° � θ),

for 0° ! θ ! 180°.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2008]

Double-angle formulae

 ●  As you work through these proofs, think how you can check the results.

 Is a check the same as a proof?

Substituting φ " θ in the relevant compound-angle formulae leads immediately 
to expressions for sin 2θ, cos 2θ and tan 2θ, as follows.

(i)    sin(θ + φ) " sin θ cos φ + cos θ sin φ

When φ " θ, this becomes

  sin(θ + θ) " sin θ cos θ + cos θ sin θ

 giving sin 2θ " 2sin θ cos θ.
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(ii)      cos(θ + φ) " cos θ cos φ – sin θ sin φ

When φ " θ, this becomes

    cos(θ + θ) " cos θ cos θ – sin θ sin θ

 giving cos 2θ " cos2 θ – sin2 θ.

Using the Pythagorean identity cos2 θ + sin2 θ " 1, two other forms for cos 2θ can 
be obtained.

cos 2θ " (1 – sin2 θ) – sin2 θ  ¡ cos 2θ " 1 – 2 sin2 θ

cos 2θ " cos2 θ – (1 – cos2 θ)  ¡ cos 2θ " 2 cos2 θ – 1

These alternative forms are often more useful since they contain only one 
trigonometrical function.

(iii)         tan(θ + φ) " 
tan tan
– tan

θ φ
θ φ

�
1 tan

  (θ + φ) ≠ 90°, 270°, ...

 When φ " θ, this becomes

        tan(θ + θ) " 
tan tan
– tan tan

θ θ
θ θ

�
1

 giving tan 2θ " 
2

1 2
tan

– tan
θ

θ
  θ ≠ 45°, 135°, ... .

Uses of the double-angle formulae

In modelling situations

You will meet situations, such as that below, where using a double-angle formula 
not only allows you to write an expression more neatly but also thereby allows 
you to interpret its meaning more clearly.

grRXQd hRri]RQtal distaQce

5

X

α

height

Figure 3.5
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When an object is projected, such as a golf ball being hit as in figure 3.5, with 
speed u at an angle α to the horizontal over level ground, the horizontal distance 
it travels before striking the ground, called its range, R, is given by the product of 

the horizontal component of the velocity u cos α and its time of flight 
2u

g
sinα

.     

R u
g" 2 2sin cosα α

Using the double-angle formula, sin 2α " 2 sin α cos α allows this to be written as

R u
g"

2 2sin .α

Since the maximum value of sin 2α is 1, it follows that the greatest value of the 

range R is ug
2

 and that this occurs when 2α " 90° and so α " 45°. Thus an angle of 

projection of 45° will give the maximum range of the projectile over level ground. 

(This assumes that air resistance may be ignored.)

In this example, the double-angle formula enabled the expression for R to be 
written tidily. However, it did more than that because it made it possible to find 
the maximum value of R by inspection and without using calculus.

In calculus

The double-angle formulae allow a number of functions to be integrated and you 
will meet some of these later (see page 125).

The formulae for cos 2θ are particularly useful in this respect since

cos 2θ " 1 – 2 sin2 θ ¡ sin2 θ " 12(1 – cos 2θ)

and

cos 2θ " 2 cos2 θ – 1 ¡ cos2θ " 12(1 + cos 2θ)

and these identities allow you to integrate sin2 θ and cos2 θ.

In solving equations

You will sometimes need to solve equations involving both single and double 
angles as shown by the next two examples.

EXAMPLE 3.4 Solve the equation sin 2θ " sin θ for 0° ! θ ! 360°.

SOLUTION

 sin 2θ " sin θ

¡ 2 sin θ cos θ " sin θ

¡ 2 sin θ cos θ – sin θ " 0

¡ sin θ(2 cos θ – 1) " 0

¡ sin θ " 0  or  cos θ " 1
2  

Be careful here: don’t 
cancel sin θ or some 

roots will be lost.
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sin θ " 0   ¡   θ " 0° (principal value) or 180° or 360° (see figure 3.6)

cos θ " 1
2    ¡   θ " 60° (principal value) or 300° (see figure 3.7)

The full set of roots for 0° ! θ ! 360° is θ " 0°, 60°, 180°, 300°, 360°.

When an equation contains cos 2θ, you will save time if you take care to choose 
the most suitable expansion.

EXAMPLE 3.5 Solve 2 + cos 2θ " sin θ for 0 ! θ ! 2π. (Notice that the request for 0 ! θ ! 2π, 
i.e. in radians, is an invitation to give the answer in radians.)

SOLUTION

Using cos 2θ " 1 – 2 sin2 θ gives 

           2 + (1 – 2 sin2 θ) " sin θ

¡        2 sin2 θ + sin θ – 3 " 0

¡  (2 sin θ + 3)(sin θ – 1) " 0

¡ sin θ " �3
2  (not valid since –1 ! sin θ ! 1)

or sin θ " 1

2 1���

y   siQ θ

3���

1

±1

θ

y

Figure 3.6

The principal value is the 
one which comes from 

your calculator.

2 ���

y   cRs θ

3���3���

1

1
2

±1

θ

y

Figure 3.7

This is the most  
suitable expansion since  

the right-hand side 
contains sin θ.
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Figure 3.8 shows that the principal value θ " 
π
2  is the only root for 0 ! θ ! 2π.

EXERCISE 3C   1 Solve the following equations for 0° ! θ ! 360°.

(i) 2 sin 2θ " cos θ (ii) tan 2θ " 4 tan θ 

(iii) cos 2θ + sin θ " 0 (iv) tan θ tan 2θ " 1 

(v) 2 cos 2θ " 1 + cos θ

2 Solve the following equat ions for –π ! θ ! π.

(i) sin 2θ " 2 sin θ (ii) tan 2θ " 2 tan θ 

(iii) cos 2θ – cos θ " 0 (iv) 1 + cos 2θ " 2 sin2 θ 

(v) sin 4θ " cos 2θ 

 Hint: Write the expression in part (v) as an equation in 2θ.

3 By first writing sin 3θ as sin(2θ + θ), express sin 3θ in terms of sin θ. 
Hence solve the equation sin 3θ " sin θ for 0 ! θ ! 2π.

4 Solve cos 3θ " 1 – 3 cos θ for 0° ! θ ! 360°.

5 Simplify 
1 2

2
� cos
sin

θ
θ .

6 Express tan 3θ in terms of tan θ.

7 Show that 1
1

2

2
– tan

tan
θ
θ�

 " cos 2θ.

8 (i) Show that tan 
π
4 4

1+( ) ( ) =θ θtan – .π

(ii) Given that tan 26.6° " 0.5, solve tan θ " 2 without using your calculator. 
Give θ to 1 decimal place, where 0° " θ " 90°.

9 (i) Sketch on the same axes the graphs of

  y " cos 2x    and    y " 3 sin x – 1    for    0 ! x ! 2π.

(ii) Show that these curves meet at points whose x co-ordinates are solutions 
of the equation 2 sin2 x + 3 sin x – 2 " 0.

(iii) Solve this equation to find the values of x in terms of π for 0 ! x ! 2π.
[MEI]

2

y   siQ θ1

θ

y

U
2

2UU

Figure 3.8
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10  (i) Prove the identity

cos 4θ � 4 cos 2θ } 8 cos4 θ � 3.

(ii) Hence solve the equation

cos 4θ � 4 cos 2θ " 2,

for 0° ! θ ! 360°.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2005]

11 (i) Prove the identity cosec 2θ � cot 2θ } cot θ.

(ii) Hence solve the equation cosec 2θ � cot 2θ " 2, for 0° ! θ ! 360°.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 June 2009]

12 It is given that cos a " 35, where 0° ! a ! 90°. Showing your working and 
without using a calculator to evaluate a,

(i) find the exact value of sin(a – 30)°,

(ii) find the exact value of tan 2a, and hence find the exact value of tan 3a.

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q3 June 2010]

The forms r  cos(θ ± α), r  sin(θ ± α)

Another modification of the compound-angle formulae allows you to simplify 
expressions such as 4 sin θ + 3 cos θ and hence solve equations of the form       

a  sin θ + b cos θ " c.

To find a single expression for 4 sin θ + 3 cos θ, you match it to the expression

r sin(θ + α) " r(sin θ cos α + cos θ  sin α).

This is because the expansion of r sin(θ +  α) has sin θ in the first term, cos θ in 
the second term and a plus sign in between them. It is then possible to choose 
appropriate values of r and α.

4 sin θ + 3 cos θ } r(sin θ cos α + cos θ sin α)

Coefficients of sin θ:      4 " r  cos α

Coefficients of cos θ:      3 " r  sin α.

Looking at the right-angled triangle in figure 3.9 gives the values for r and α.

α

U
3

�

Figure 3.9

The sides, 4 and 3, come 
from the expression  

4 sin θ + 3 cos θ.

r = 3 42 2�   
 = 5
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In this triangle, the hypotenuse is 4 3 52 2+ = , which corresponds to r in the  
expression above.

The angle α is given by

sin α " 3
5
      and      cos α " 4

5      ¡      α " 36.9°.

So the expression becomes

4 sin θ + 3 cos θ " 5 sin(θ + 36.9°).

The steps involved in this procedure can be generalised to write 

a  sin θ + b cos θ " r sin(θ + α) 

where

r a b= +2 2

 
sinα =

+
=b

a b
b
r2 2      

cosα =
+

=a
a b

a
r2 2

The same expression may also be written as a cosine function. In this case,  
rewrite 4 sin θ + 3 cos θ as 3 cos θ + 4 sin θ and notice that:

(i) The expansion of cos(θ – β) starts with cos θ … just like the expression
3 cos θ + 4 sin θ.

(ii) The expansion of cos(θ – β) has + in the middle, just like the expression 
3 cos θ + 4 sin θ.

The expansion of r cos(θ – β) is given by

r cos(θ – β) " r(cos θ  cos β + sin θ  sin β).

To compare this with 3 cos θ + 4 sin θ, look at the triangle in figure 3.10 in which

r " 3 4 52 2+ =  cos β " 3
5
 sin β " 4

5
 ¡  β " 53.1°.

This means that you can write 3 cos θ + 4 sin θ in the form

r cos(θ – β) " 5 cos(θ – 53.1°).

β

U �

3

Figure 3.10

r = 3 42 2�   
 = 5
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The procedure used here can be generalised to give the result

a cos θ + b sin θ " r cos(θ – α)

where    

r " a b2 2�        cos α " ar   sin α " br .

Note

The value of r will always be positive, but cos α and sin α may be positive or 

negative, depending on the values of a and b. In all cases, it is possible to find an 

angle α for which –180° " α " 180°.

You can derive alternative expressions of this type based on other compound- 
angle formulae if you wish α to be an acute angle, as is done in the next example.

EXAMPLE 3.6 (i) Express 3 sin θ – cos θ in the form r sin(θ – α), where r # 0 and 0 " α " π
2

.

(ii) State the maximum and minimum values of 3 sin θ – cos θ.

(iii) Sketch the graph of y " 3 sin θ – cos θ for 0 ! θ ! 2π.

(iv) Solve the equation 3 sin θ – cos θ " 1 for 0 ! θ ! 2π.

SOLUTION

(i) r sin(θ – α) " r(sin θ cos α – cos θ sin α)
 " (r cos α)sin θ – (r sin α)cos θ

 Comparing this with 3 sin θ – cos θ, the two expressions are identical if

r cos α " 3           and          r sin α " 1.

 From the triangle in figure 3.11

r " 1 3 2+ =      and     tan α " 1

3
    ¡   α " π

6

 so                  3 sin θ – cos θ " 2 sin(θ – π
6).

(ii) The sine function oscillates between 1 and –1, so 2 sin(θ – π
6) oscillates 

between 2 and –2. 

Maximum value " 2
Minimum value " –2.

α

U
1

3

Figure 3.11
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(iii) To sketch the curve y " 2 sin(θ – π
6), notice that

● it is a sine curve
●  its y values go from �2 to 2
● it crosses the horizontal axis where θ =  

U U U
6

7
6

13
6

, , ,

 The curve is shown in Figure 3.12.

(iv) The equation 3 sin θ – cos θ " 1 is equivalent to

        2 sin(θ – π
6) " 1

¡      sin(θ – π
6) " 12

 Let x " (θ – π
6) and solve sin x " 12.

Solving sin x " 1
2

 gives x " π
6

 (principal value) 

or x " π – π
6

 " 5
6
π (from the graph in figure 3.13)

giving        θ " π
6

 + π
6

 " π
3

       or      θ " 5
6
π + π

6
 " π.

The roots in 0 ! θ ! 2π are θ " π
3

 and π.

2

2

±2

θ

y

U
�

U
2

3U
2

2U7U
�

5U
2

U 13U
�

Figure 3.12

2

y   siQ x

x

y

U
�

U
�

U

U ±

Figure 3.13



Tr
ig

o
n

o
m

et
ry

70

P2 

3
!  Always check (for example by reference to a sketch graph) that the number 

of roots you have found is consistent with the number you are expecting. 
When solving equations of the form sin(θ – α) " c by considering sin x " c, it is 
sometimes necessary to go outside the range specified for θ since, for example, 
0 ! θ ! 2π is the same as –α ! x ! 2π – α.

Using these forms

There are many situations which produce expressions which can be tidied 
up using these forms. They are also particularly useful for solving equations 
involving both the sine and cosine of the same angle.

The fact that a cos θ + b sin θ can be written as r cos(θ – α) is an illustration of the 
fact that any two waves of the same frequency, whatever their amplitudes, can be 
added together to give a single combined wave, also of the same frequency.

EXERCISE 3D  1 Express each of the following in the form r cos(θ – α), where r # 0 and   
  0° " α " 90°.

(i) cos θ + sin θ (ii) 20 cos θ + 21 sin θ

(iii) cos θ + 3 sin θ (iv) 5 cos θ + 2 sin θ

2 Express each of the following in the form r cos(θ + α), where r # 0 and 

 0 " α " π
2

.

(i) cos θ – sin θ (ii) 3 cos θ – sin θ

3 Express each of the following in the form r sin(θ + α), where r # 0 and                
0° " α " 90°.

(i) sin θ + 2 cos θ (ii) 2 sin θ + 5 cos θ

4   Express each of the following in the form r sin(θ – α), where r # 0 and             

 0 " α " π
2

.

(i) sin θ – cos θ (ii) 7 sin θ – 2 cos θ

5 Express each of the following in the form r cos(θ – α), where r # 0 and                 
–180° " α " 180°.

(i) cos θ – 3 sin θ (ii) 2 2 cos θ – 2 2 sin θ

(iii) sin θ + 3 cos θ (iv) 5 sin θ + 12 cos θ

(v) sin θ – 3 cos θ (vi) 2 sin θ – 2 cos θ
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6  (i) Express 5 cos θ – 12 sin θ in the form r cos(θ + α), where r # 0 and         
0° " α " 90°.

(ii) State the maximum and minimum values of 5 cos θ – 12 sin θ.

(iii) Sketch the graph of y " 5 cos θ – 12 sin θ for 0° ! θ ! 360°.

(iv) Solve the equation 5 cos θ – 12 sin θ " 4 for 0° ! θ ! 360°.

7 (i) Express 3 sin θ – 3 cos θ in the form r sin(θ – α), where r # 0 and              

   0 " α " π
2

.

(ii) State the maximum and minimum values of 3 sin θ – 3 cos θ and the 
smallest positive values of θ for which they occur.

(iii) Sketch the graph of y " 3 sin θ – 3 cos θ for 0 ! θ ! 2π.

(iv) Solve the equation 3 sin θ – 3 cos θ " 3 for 0 ! θ ! 2π.

8 (i) Express 2 sin 2θ + 3 cos 2θ in the form r sin(2θ + α), where r # 0 and            
0° < α < 90°.

(ii) State the maximum and minimum values of 2 sin 2θ + 3 cos 2θ and the 
smallest positive values of θ for which they occur.

(iii) Sketch the graph of y " 2 sin 2θ + 3 cos 2θ for 0° ! θ ! 360°.

(iv) Solve the equation 2 sin 2θ + 3 cos 2θ " 1 for 0° ! θ ! 360°.

9  (i) Express cos θ + 2 sin θ in the form r cos(θ – α), where r # 0 and                 
0° < α < 90°.

(ii) State the maximum and minimum values of cos θ + 2 sin θ and the 
smallest positive values of θ for which they occur.

(iii) Sketch the graph of y " cos θ + 2 sin θ for 0° ! θ ! 360°.

(iv) State the maximum and minimum values of

1

3 2� �cos sinθ θ   

 and the smallest positive values of θ for which they occur.

10 The diagram shows a table jammed in a corridor. The table is 120 cm long 
and 80 cm wide, and the width of the corridor is 130 cm.

(i) Show that 12 sin θ + 8 cos θ " 13.

(ii) Hence find the angle θ. (There are two answers.)

13� cm

�� cm

12� cm

θ
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11 (i) Use a trigonometrical formula to expand cos(x + α).

(ii) Express y " 2 cos x – 5 sinx in the form r cos(x + α), giving the positive 
value of r and the smallest positive value of α.

(iii) State the maximum and minimum values of y and the corresponding 
values of x for 0° ! x ! 360°.

(iv) Solve the equation

2 cos x – 5 sin x " 3,   for 0° ! x ! 360°.
 [MEI]

12 (i) Find the value of the acute angle α for which

5 cos x – 3 sin x " 34 cos(x + α)

for all x.

Giving your answers correct to 1 decimal place,
(ii) solve the equation 5 cos x – 3 sin x " 4 for 0° ! x ! 360°

(iii) solve the equation 5 cos 2x – 3 sin 2x " 4 for 0° ! x ! 360°.
 [MEI]

13 (i) Find the positive value of R and the acute angle α for which

6 cos x + 8 sin x " R cos(x – α).

(ii) Sketch the curve with equation

y " 6 cos x + 8 sin x ,   for 0° ! x ! 360°.

Mark your axes carefully and indicate the angle α on the x axis.

(iii) Solve the equation

6 cos x + 8 sin x " 4,   for 0° ! x ! 360°.

(iv) Solve the equation

8 cos θ + 6 sin θ " 4,   for 0° ! θ ! 360°.
 [MEI]

14 In the diagram below, angle QPT " angle SQR " θ, angle QPR " α, PQ " a, 
QR " b, PR " c, angle QSR " angle QTP " 90°, SR " TU.

(i) Show that angle PQR " 90°, and write down the length of c in terms of 
a and b.

(ii) Show that PU may be written as a cos θ + b  sin θ and as c cos(θ – α).         
Write down the value of tan α in terms of a and b.

P T U

R

Q

a
S

b

c

θ

α
θ
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    (iii) In the case when a " 4, b " 3, find the acute angle α.

(iv) Solve the equation

4 cos θ + 3 sin θ " 2  for    0° ! θ ! 360°.
 [MEI]

15 (i) Express 3 cos x � 4 sin x in the form R cos(x – α), where R # 0 and 
0° " α " 90°, stating the exact value of R and giving the value of α 
correct to 2 decimal places.

(ii) Hence solve the equation

     3 cos x � 4 sin x " 4.5,

giving all solutions in the interval 0° " x " 360°.

 [Cambridge International AS & A Level Mathematics 9709, Paper 22 Q6 November 2009]

16 (i) Express 5 cos θ � sin θ in the form R cos(θ � α), where R # 0 and 
0° " α " 90°, giving the exact value of R and the value of α correct to 
2 decimal places.

(ii) Hence solve the equation

    5 cos θ � sin θ " 4,

giving all solutions in the interval 0° ! θ ! 360°.
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q5 June 2008]

17 (i) Express 7 cos θ � 24 sin θ in the form R cos(θ � α), where R # 0 and 
0° " α " 90°, giving the exact value of R and the value of α correct to 
2 decimal places.

(ii) Hence solve the equation

    7 cos θ � 24 sin θ " 15,

giving all solutions in the interval 0° ! θ ! 360°.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2006]

18 By expressing 8 sin θ � 6 cos θ in the form R sin(θ � α), solve the equation

    8 sin θ � 6 cos θ " 7,

for 0° ! θ ! 360°.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 November 2005]
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INVESTIGATION

The simplest alternating current is one 
which varies with time t according to 

I " A sin 2πft, 

where f is the frequency and A is the 
maximum value. The frequency of  
the public AC supply is 50 hertz  
(cycles per second).

Investigate what happens when  
two alternating currents                  
A1 sin 2πft and A2 sin(2πft + α) with 
the same frequency f but a phase 
difference of α are added together.

The previous exercises have each concentrated on just one of the many  
trigonometrical techniques which you will need to apply confidently. The  
following exercise requires you to identify which technique is the correct one.

EXERCISE 3E  1 Simplify the following.

(i) 2 sin 3θ cos 3θ (ii) cos2 3θ – sin2 3θ

(iii) cos2 3θ + sin2 3θ (iv) 1 – 2 sin2 θ
2( ) 

(v) sin(θ – α)cos α + cos(θ – α)sin α (vi) 3 sin θ cos θ

(vii) sin
sin

2
2

θ
θ 

 (viii) cos 2θ – 2 cos2 θ

2 Express

(i) (cos x – sin x)2 in terms of sin 2x

(ii) cos4 x – sin4 x in terms of cos 2x

(iii) 2 cos2 x – 3 sin2 x in terms of cos 2x.

3 Prove that

(i) 1 2
1 2
−
+

cos
cos

θ
θ  

} tan2 θ

(ii) cosec 2θ + cot 2θ } cot θ

(iii) tan 4θ } 
4 1

1 6

2

2 4
t t

t t
( )−

− +  
where t " tan θ.
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4  Solve the following equations.

(i) sin(θ + 40°) " 0.7 0° ! θ ! 360°

(ii) 3 cos2 θ + 5 sin θ – 1 " 0 0° ! θ ! 360°

(iii) 2 cos(θ – π
6) " 1 –π ! θ ! π

(iv) cos(45° – θ) " 2 sin(30° + θ) –180° ! θ ! 180°

(v) cos 2θ + 3 sin θ " 2 0 ! θ ! 2π

(vi) cos θ + 3 sin θ " 2 0° ! θ ! 360°

(vii) tan2 θ – 3 tan θ – 4 " 0 0° ! θ ! 180°

The general solutions of trigonometrical equations 

The equation tan θ " 1 has infinitely many roots:

…, –315°,   –135°,   45°,   225°,   405°, … (in degrees)

…, – 7
4
π,  – 3

4
π,  – π

4
,  5

4
π,  9

4
π, …       (in radians).

         

Only one of these roots, namely 45° or π
4

, is denoted by the function tan�1 1. 
This is the value which your calculator will give you. It is called the principal value.

The principal value for any inverse trigonometrical function is unique and lies 
within a specified range:

– π
2 

" tan�1 x " π
2

   
                               

– π
2  

! sin�1 x ! π
2

     
                            

   0 ! cos�1 x ! π.

It is possible to deduce all other roots from the principal value and this is shown 
below.

To solve the equation tan θ " c, notice how all possible values of θ occur at 
intervals of 180° or π radians (see figure 3.14). So the general solution is

θ " tan�1 c + nπ    n ! $  (in radians).

2
���±��� 2���

y   taQ θ

θ

y

F

U
2

3U
2

U
2 ±

Figure 3.14 tan�1
 c

principal value
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The cosine graph (see figure 3.15) has the y axis as a line of symmetry. Notice 
how the values ±cos�1 c generate all the other roots at intervals of 360° or 2π. So 
the general solution is

θ " ±cos�1 c + 2nπ n ! $  (in radians).

Now look at the sine graph (see figure 3.16). As for the cosine graph, there are 

two roots located symmetrically. The line of symmetry for the sine graph is θ " π
2

, 

which generates all the other possible roots. This gives rise to the slightly more 
complicated expressions

θ "  π
2

 ± (π
2

 – sin�1 c) + 2nπ

or θ " (2n + 1
2)π ± (π

2
 – sin�1 c)     n ! $.

You may, however, find it easier to remember these as two separate formulae:

θ " 2nπ + sin�1 c or θ " (2n + 1)π – sin�1 c.

ACTIVITY 3.3 Show that the general solution of the equation sin θ " c may also be written

θ " nπ + (–1)n sin�1 c.

2
���±���±2���±���� 2��� ���� �3��

y   cRs θ

θ

y

F

U
2

U
2±±± 3U

2
3U
2

�U
2

�U
2

�U
2

Figure 3.15
–cos–1

 c cos–1
 c

principal value

2
±1���±3���±���� 1��� 3��� ����

y   siQ θ

θ

y

F

±U±2U±3U 3U2UU

Figure 3.16
sin�1

 c
principal value

(180° – sin�1
 c)

or (π – sin�1
 c)
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KEY POINTS

1 sec θ " 1
cos θ

;    cosec θ " 1
sinθ

;    cot θ " 1
tanθ

2 tan2 θ + 1 " sec2 θ;    1 + cot2 θ " cosec2 θ

3 Compound-angle formulae

 ● sin(θ + φ) " sin θ cos φ + cos θ sin φ

 ● sin(θ – φ) " sin θ cos φ – cos θ sin φ

 ● cos(θ + φ) " cos θ cos φ – sin θ sin φ

 ● cos(θ – φ) " cos θ cos φ + sin θ sin φ

 ● tan(θ + φ) " 
tan tan

tan tan
θ φ

θ φ
+

−1
  (θ + φ)  | 90°, 270°, ...

 ● tan(θ – φ) "  
tan tan

tan tan
θ φ

θ φ
−

+1
  (θ – φ)  | 90°, 270°, ...                     

4 Double-angle and related formulae

 ● sin 2θ " 2 sin θ cos θ

 ● cos 2θ " cos2 θ – sin2 θ " 1 – 2 sin2 θ " 2 cos2 θ – 1

 ● tan 2θ " 2
1 2

tan
tan

θ
θ�

  θ  | 45°, 135°, ... 

 ● sin2 θ " 1
2
(1 – cos 2θ)

 ● cos2 θ " 1
2
(1 + cos 2θ)

5  The r, α formulae

 ● a sin θ + b cos θ " r sin(θ + α)

 ● a sin θ – b cos θ " r sin(θ – α)

 ● a cos θ + b sin θ " r cos(θ – α)

 ● a cos θ – b sin θ " r cos(θ + α)
} where r " a b2 2�

 cos α " 
a
r

 sin α " br
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Differentiation

A mathematician, like a painter or poet, is a maker of patterns. If his 
patterns are more permanent than theirs it is because they are made 
with ideas.

G.H. Hardy

The product rule

Figure 4.1 shows a sketch of the curve of y " 20x(x � 1)6.

x

y

Figure 4.1

If you wanted to find the gradient function, d
d

y
x

, for the curve, you could expand 

the right-hand side then differentiate it term by term � a long and cumbersome 
process!

There are other functions like this, made up of the product of two or more 
simpler functions, which are not just time-consuming to expand � they are 
impossible to expand. One such function is

y x x x= − + >( ) ( ) ( ).1 1 1
1
2 6 for .

Clearly you need a technique for differentiating functions that are products of 
simpler ones, and a suitable notation with which to express it.

The most commonly used notation involves writing

y " uv,

where the variables u and v are both functions of x. Using this notation, d
d

y
x

 is 
given by

d
d

d
d

d
d

y
x

u v
x

v u
x

= + .

This is called the product rule and it is derived from first principles in the next 
section.

4
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The product rule from first principles

A small increase δx in x leads to corresponding small increases δu, δv and δy in u, 
v and y. And so

y � δy " (u � δu)(v � δv)
 " uv � vδu � uδv � δuδv.

Since y " uv, the increase in y is given by

δy " vδu � uδv � δuδv.

Dividing both sides by δx, 

δ
δ

δ
δ

δ
δ δ δ

δ
y
x

v u
x

u v
x

u v
x

= + + .

In the limit, as δx q�0, so do δu, δv and δy, and

δ
δ

δ
δ

δ
δ

u
x

u
x

v
x

v
x

y
x

y
x

→ → →d
d

d
d

and
d
d

, .

The expression becomes

d
d

d
d

d
d

y
x

v u
x

u v
x

= + .

Notice that since δu q��0 the last term on the right-hand side has disappeared. 

EXAMPLE 4.1 Given that y " (2x � 3)(x 2 � 5), find d
d

y
x

 using the product rule.

SOLUTION

y " (2x � 3)(x2 � 5)

Let u " 2x � 3 and v " x2 � 5.

Then d
d

u
x

 " 2 and d
d

v
x

 " 2x.

Using the product rule, d
d

d
d

d
d

y
x

v u
x

u v
x

= +

 " (x2 � 5) w 2 � (2x  � 3) w 2x

 " 2(x2 � 5 � 2x2 � 3x)

 " 2(3x2 � 3x � 5)

Note

In this case you could have multiplied out the expression for y.

 y " 2x3 � 3x2 � 10x � 15

 d
d

y
x

 " 6x2 � 6x � 10

  " 2(3x2 � 3x � 5)
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EXAMPLE 4.2 Differentiate y " 20x(x � 1)6.

SOLUTION

Let u " 20x and v " (x � 1)6.

Then d
d

u
x

 " 20 and d
d

v
x

 " 6(x � 1)5 (using the chain rule).

Using the product rule, 
d
d

d
d

d
d

y
x

v u
x

u v
x

= +

 " (x � 1)6 w 20 � 20x w 6(x � 1)5

 " 20(x � 1)5 w (x � 1) � 20(x � 1)5 w 6x

 " 20(x � 1)5[(x � 1) � 6x]

 " 20(x � 1)5(7x � 1)

The factorised result is the most useful form for the solution, as it allows you to 
find stationary points easily. You should always try to factorise your answer as 
much as possible. Once you have used the product rule, look for factors straight 
away and do not be tempted to multiply out.

The quotient rule

In the last section, you met a technique for differentiating the product of two 
functions. In this section you will see how to differentiate a function which is the 
quotient of two simpler functions.

As before, you start by identifying the simpler functions. For example, the function

y x
x

= +
−

3 1
2    

(for x ! 2)

can be written as y " u
v

 where u " 3x � 1 and v " x � 2. Using this notation, d
d

y
x

 is 
given by

d
d

d
d

d
dy

x

v u
x

u v
x

v
=

−
2

This is called the quotient rule and it is derived from first principles in the 
next section.

20(x � 1)5 is a 
common factor.
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The quotient rule from first principles

A small increase, δx in x results in corresponding small increases δu, δv and δy in 
u, v and y. The new value of y is given by

y y u u
v v

+ = +
+δ δ
δ

and since y " u
v

, you can rearrange this to obtain an expression for δy in terms of 
u and v.

δ δ
δy u u

v v
u
v

= +
+ −

  = + − +
+

v u u u v v
v v v

( ) ( )
( )
δ δ

δ

    = + − −
+

uv v u uv u v
v v v
δ δ

δ( )

  = −
+

v u u v
v v v
δ δ

δ( )

Dividing both sides by δx gives

δ
δ

δ
δ

δ
δ

δ
y
x

v u
x

u v
x

v v v
=

−
+( )

In the limit as δx  q�0, this is written in the form you met on the previous page.

d
d

d
d

d
dy

x

v u
x

u v
x

v
=

−
2

ACTIVITY 4.1 Verify that the quotient rule gives d
d

y
x

 correctly when u " x10 and v " x7.

EXAMPLE 4.3 Given that y " 3 1
2

x
x

+
−

, find d
d

y
x  

using the quotient rule.

SOLUTION

Letting u " 3x � 1 and v " x � 2 gives

d
d

u
x  " 3    and     

d
d

v
x  " 1.

Using the quotient rule, 
d
d

d
d

d
dy

x

v u
x

u v
x

v
=

−
2  

                                                 
= − × − + ×

−
( ) ( )

( )
x x

x
2 3 3 1 1

2 2  

                                                 
= − − −

−
3 6 3 1

2 2
x x

x( )  

                                                 
= −

−
7
2 2( )x  

To divide the right-hand  
side by Ix you only divide 

the numerator by Ix.
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EXAMPLE 4.4 Given that y " x
x

2 1
3 1

+
−

, find d
d

y
x

 using the quotient rule.

SOLUTION

Letting u " x2 � 1 and v "�3x � 1 gives

d
d

u
x  " 2x    and     

d
d

v
x  " 3.

                 
Using the quotient rule, 

d
d

d
d

d
dy

x

v u
x

u v
x

v
=

−
2  

                                                 
= − × − + ×

−
( ) ( )

( )
3 1 2 1 3

3 1

2

2
x x x

x  

                                                 
= − − −

−
6 2 3 3

3 1

2 2

2
x x x

x( )  

                                                 
= − −

−
3 2 3

3 1

2

2
x x

x( )
 

EXERCISE 4A  1  Differentiate the following using the product rule or the quotient rule.

(i) y " (x2 � 1)(x3 � 3) (ii) y " x5(3x2 � 4x � 7)

(iii) y " x2(2x � 1)4 (iv) y x
x

= −
2

3 1

(v) y x
x

=
+
3

2 1
 (vi) y " (2x � 1)2(3x2 � 4)

(vii) y x
x

= −
+

2 3
2 12  (viii) y x

x
= −

+
2
3 2( )

(ix) y x x= + −( )1 1

2 The diagram shows the graph of y " x
x � 1

.

(i) Find d
d

y
x

.

(ii) Find the gradient of the 
curve at (0, 0), and the 
equation of the tangent       
at (0, 0).

(iii) Find the gradient of the 
curve at (2, 2), and the 
equation of the tangent      
at (2, 2).

(iv) What can you deduce 
about the two tangents?

x

y

1

12
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3  Given that y " (x � 1)(x � 2)2

(i) find d
d

y
x

(ii) find any stationary points and determine their nature
(iii) sketch the curve.

4 Given that y " x
x

�
�

3
4

(i) find d
d

y
x

(ii) find the equation of the tangent to the curve at the point (6, 1.5)

(iii) find the equation of the normal to the curve at the point (5, 2)

(iv) use your answer from part (i) to deduce that the curve has no stationary 
points, and sketch the graph.

5 The diagram shows the graph of y
x

x
=

−
2

1
, which is undefined for x < 0 and 

 x " 1. P is a minimum point.

(i) Find d
d

y
x

.

(ii) Find the gradient of the curve at (9, 9), and show that the equation of the 
normal at (9, 9) is y " �4x � 45.

(iii) Find the co-ordinates of P and verify that it is a minimum point.

 (iv) Write down the equation of the tangent and the normal to the curve at P.

(v) Write down the point of intersection of the normal found in part (ii) and

 (a) the tangent found in part (iv), call it Q

 (b) the normal found in part (iv), call it R.

(vi) Show that the area of the triangle PQR is 441
8

.

x

y

P

2
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6  The diagram shows the graph of y " x x
x

2 2 5
2 3
− −

+
.

(i) Find d
d

y
x

.

(ii) Use your answer from part (i) to find any stationary points of the curve.

(iii) Classify each of the stationary points and use calculus to justify your answer.

7 A curve has the equation y " x
x

2

2 1�
.

(i) Find d
d

y
x

 .

 Hence find the co-ordinates of the stationary points on the curve.

(ii) You are given that 
d
d

2

2 3
2

2 1
y

x x
=

+( )
 .

Use this information to determine the nature of the stationary points in 
part (i).

[MEI]

8 The diagram shows part of the graph with the equation y " x x9 2 2� .
It crosses the x axis at (a, 0).

(i) Find the value of a, giving your answer as a multiple of 2 .

y

O x–1.5

O (a, 0)

y

x
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(ii) Show that the result of differentiating 9 2 2� x  is 
�

�

2

9 2 2

x

x
.

 Hence show that if y " x 9 2 2� x  then

 

d
d

y
x

x

x
= −

−
9 4

9 2

2

2
.

(iii) Find the x co-ordinate of the maximum point on the graph of y " x 9 2 2� x .

 Write down the gradient of the curve at the origin. 
What can you say about the gradient at the point (a, 0)?

Differentiating natural logarithms and exponentials

In Chapter 2 you learnt that the integral of  1
x

 is ln x. It follows, therefore, that the 

differential of ln x is  1
x

.

So y " ln x  ¡ 
d
d

y
x x

" 1

The differential of the inverse function, y " ex, may be found by interchanging        
y and x.

x " ln y ¡ d
d

x
y y

" 1

� ¡ 
d
d

ed
d

y
x

yx
y

x" " "1 .

Therefore d
d

e e
x

x x" . 

The differential of ex is itself ex. This may at first seem rather surprising.

●  The function f(x) (x ! !) is a polynomial in x of order n.

So
f(x) " anxn � an�1xn�1 � ... � a1x � a0

where an, an�1, ..., a0 are all constants and at least an is not zero.

 How can you prove that d
dx

f(x) cannot equal f(x)?

Since the differential of ex is ex, it follows that the integral of ex is also ex.

µex dx " ex � c.

This may be summarised as in the following table.
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 Differentiation Integration

y �q 
d
d

y
x

y �q µ y dx

ln x �q 1
x

1
x

 �q ln x � c

ex �q ex ex �q ex � c

These results allow you to extend very considerably the range of functions which 
you are able to differentiate and integrate.

EXAMPLE 4.5 Differentiate y " e5x.

SOLUTION

Make the substitution u " 5x to give y " eu.

Now d
d

y
u

 " eu " e5x    and   d
d

u
x

 " 5.

By the chain rule,

d
d

d
d

d
d

y
x

y
u

u
x

= ×

 " e5x w 5

 " 5e5x

This result can be generalised as follows.

y " eax    ¡    d
d

y
x

 " aeax    where a is any constant.

This is an important standard result, and you would normally use it 
automatically, without recourse to the chain rule.

EXAMPLE 4.6 Differentiate y " 4
2e x

.

SOLUTION

 y " 4 42
2

e
ex

x= −

¡����������d
d

e
y
x

x= × −( )−4 2 2

 
  " �8e�2x
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EXAMPLE 4.7 Differentiate y " 3e(x2�1).

SOLUTION

Let u " x2 � 1, then y " 3eu.

¡ 
d
d

e e and d
d

y
u

u
x

u x= = +3 3
2 1( )  " 2x

By the chain rule, 

d
d

d
d

d
d

y
x

y
u

u
x

= ×

� " 3e(x2�1) w 2x

� " 6xe(x2�1)

EXAMPLE 4.8 Differentiate the following.

(i) y " 2 ln x  (ii) y " ln(3x)

SOLUTION

(i) d
d

y
x x
= ×2 1

  " 2
x

(ii) Let u " 3x, then y " ln u

¡ 
d
d

and d
d

y
u u x

u
x

" " "1 1
3

3

By the chain rule,

 
d
d

d
d

d
d

y
x

y
u

u
x

= ×

 " 1
3

3
x

w

 " 1
x

Note

An alternative solution to part (ii) is

y " ln(3x) " ln 3 � ln x      ¡      dd
y
x x x

= + =0 1 1 .

●? The gradient function found in part (ii) above for y " ln(3x) is the same as that for 

y " ln(x). What does this tell you about the shapes of the two curves? For what 

values of x is it valid?
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EXAMPLE 4.9 Differentiate the following.

(i) y " ln(x4) (ii) y " ln(x2 � 1)

SOLUTION

(i) By the properties of logarithms

  y "  ln(x4)

    "  4 ln(x)

¡�����������d
d

y
x x

" 4
�

(ii) Let   u " x2 � 1, then y " lnu

¡  
d
d

and d
d

y
u u x

u
x

x= =
+

=1 1
1

22

 By the chain rule,

 
d
d

d
d

d
d

y
x

y
u

u
x

= ×

 " 
1

1
22x

x
+

×

 " 
2

12
x

x �

If you need to differentiate expressions similar to those in the examples above, 
follow exactly the same steps. The results can be generalised as follows.

y " a ln x ¡ 
d
d

y
x

a
x

"  y " aex ¡ 
d
d

e
y
x

a x"

y " ln(ax) ¡ 
d
d

y
x x

" 1  y " eax ¡ 
d
d

e
y
x

a ax"

y " ln(f(x)) ¡ 
d
d

f
f

y
x

x
x

" '( )
( )  y " ef(x) ¡ d

d
f efy

x
x x" '( ) ( )

EXAMPLE 4.10 Differentiate y " 
lnx
x

.

SOLUTION

Here y is of the form u
v

 where u " ln x and v " x

¡ 
d
d

and d
d

u
x x

v
x

" "1 1.
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By the quotient rule, 

d
d

d
d

d
dy

x

v u
x

u v
x

v
=

−
2

      
=

× − ×x x x

x

1 1
2

ln

      
= −1

2
lnx

x

EXERCISE 4B  1 Differentiate the following.

(i) y " 3 ln x (ii) y " ln(4x) 

(iii) y " ln(x 2) (iv) y " ln(x 2 � 1) 

(v) y " ln 1
x( ) (vi) y " x ln x

(vii) y " x2 ln(4x) (viii) y " ln x
x
+( )1

(ix) y " ln x2 1�  (x) y " 
lnx
x2

2  Differentiate the following.

(i) y " 3ex (ii) y " e2x

(iii) y " ex2 (iv) y " e(x�1)2

(v) y " x e4x (vi) y " 2x 3e�x

(vii) y " x
xe

 (viii) y " (e2x � 1)3

3 Knowing how much rain has fallen in a river basin, hydrologists are often able 
to give forecasts of what will happen to a river level over the next few hours.  
In one case it is predicted that the height h, in metres, of a river above its 
normal level during the next 3 hours will be 0.12e0.9t, where t is the time 
elapsed, in hours, after the prediction.

(i) Find d
d

h
t

, the rate at which the river is rising.

(ii) At what rate will the river be rising after 0, 1, 2 and 3 hours?

4 The graph of y " xex is shown below.

x

y

2
P

(i) Find 
d
d

y
x

 and 
d
d

2

2
y

x
.

(ii) Find the co-ordinates of the minimum point P.
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5  The graph of f(x) " x  ln(x2) is shown below.

(i) Describe, giving a reason, any symmetries of the graph. 

(ii) Find f '(x) and f ''(x).

(iii) Find the co-ordinates of any stationary points.

6 Given that y " e
x

x

(i) find 
d
d

y
x

(ii) find the co-ordinates of any stationary points on the curve

(iii) sketch the curve.

7 (i) Differentiate ln x and x ln x with respect to x.

 The sketch shows the graph of y " x  ln x for 0 "x " 3.

(ii) Show that the curve has a stationary point 1 1
e e

, −( ). 
 [MEI]

8 The diagram shows the graph of y " xe�x.

(i) Differentiate xe�x.

(ii) Find the co-ordinates of the point A, 
the maximum point on the curve. 

[MEI]

x

I�x�

2

x

y

�

1

2

3

1 2 3

x

y

2

A
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9  The diagram shows a sketch of the graph of y " f(x), where 

f(x) " 
lnx
x

x( )# 0 .

The graph crosses the x axis at the point P and has a turning point at Q.

(i) Write down the x co-ordinate of P.

(ii) Find the first and second derivatives, f '(x) and f ''(x), simplifying your 
answers as far as possible.

(iii) Hence show that the x co-ordinate of Q is e.
Find the y co-ordinate of Q in terms of e.
Find f ''(e), and use this result to verify that Q is a maximum point.

[MEI, part]

10 Find the exact co-ordinates of the point on the curve y x
x= −

e
1
2  at 

 which 
d
d

2

2
y

x  
" 0.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 November 2008]

11 It is given that the curve y " (x � 2)ex has one stationary point.

(i) Find the exact co-ordinates of this point.

(ii) Determine whether this point is a maximum or a minimum point.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2008]

12 The equation of a curve is y " x3e–x.

(i) Show that the curve has a stationary point where x " 3.

(ii) Find the equation of the tangent to the curve at the point where x " 1.

 [Cambridge International AS & A Level Mathematics 9709, Paper 22 Q5 June 2010]

PO

y

x

Q
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Differentiating trigonometrical functions

ACTIVITY 4.2 Figure 4.2 shows the graph of y " sin x , with x measured in radians, together with 
the graph of y " x. You are going to sketch the graph of the gradient function for 
the graph of y " sin x.

Draw a horizontal axis for the angles, marked from �2π to 2π, and a vertical axis 
for the gradient, marked from �1 to 1, as shown in Figure 4.3.

� x

dy
dx

1

±1

±U±�U 2UU

Figure 4.3

First, look for the angles for which the gradient of y " sin x is zero. Mark zeros at 
these angles on your gradient graph.

Decide which parts of y " sin x have a positive gradient and which have a negative 
gradient. This will tell you whether your gradient graph should be above or below 
the x axis at any point.

Look at the part of the graph of y " sin x near x " 0 and compare it with the graph 
of y " x. What do you think the gradient of y " sin x is at this point? Mark this 
point on your gradient graph. Also mark on any other points with plus or minus 
the same gradient.

Now, by considering whether the gradient of y " sin x is increasing or 
decreasing at any particular point, sketch in the rest of the gradient graph.

�

y   siQ x

x

y

1

±1

±U±�U

±

± 2UUU
�

y = x

�U
�

U
�

�U
�

Figure 4.2
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The gradient graph that you have drawn should look like a familiar graph. What 
graph do you think it is?

Sketch the graph of y " cos x , with x measured in radians, and use it as above to 
obtain a sketch of the graph of the gradient function of y " cos x.

●? Is y " x still a tangent of y " sin x if x is measured in degrees?

Activity 4.2 showed you that the graph of the gradient function of y " sin x 
resembled the graph of y " cos x. You will also have found that the graph of the 
gradient function of y " cos x looks like the graph of y " sin x reflected in the 
x axis to become y " �sin x.

 ●  Both of these results are in fact true but the work above does not amount to a 
proof. Explain why.

Summary of results

d
dx (sin x) " cos x  

d
dx (cos x) " �sin x

!  Remember that these results are only valid when the angle is measured in radians, 
so when you are using any of the derivatives of trigonometrical functions you 
need to work in radians.

ACTIVITY 4.3 By writing tan x " sin
cos

x
x

, use the quotient rule to show that 

d
dx

x(tan ) " sec2x  where x is measured in radians.

You can use the three results met so far to differentiate a variety of functions 
involving trigonometrical functions, by using the chain rule, product rule or 
quotient rule, as in the following examples.
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EXAMPLE 4.11 Differentiate y " cos 2x.

SOLUTION

As cos 2x is a function of a function, you may use the chain rule.

Let  u " 2x      ¡    
d
d

u
x   " 2

        y " cosu  ¡     
d
d

y
u  

" �sinu

d
d

d
d

d
d

y
x

y
u

u
x

= ×

" �sinu w 2

" �2 sin 2x

With practice it should be possible to do this in your head, without needing to 
write down the substitution.

This result may be generalised.

 y " cos kx ¡ 
d
d

y
x

 " �k sin kx .

Similarly 

 y " sin kx  ¡ 
d
d

y
x

 " k cos kx

and

 y = tan kx  ¡ 
d
d

y
x

 " k sec2 kx . 

EXAMPLE 4.12 Differentiate y " x2 sin x.

SOLUTION

x2 sin x is of the form uv, so the product rule can be used with u " x2 and v " sin x.

d
d

d
d

u
x

x v
x

x" "2 cos

Using the product rule

d
d

d
d

d
d

y
x

v u
x

u v
x

= +

            ¡ 
d
d

y
x  

" 2x  sin x � x2 cos x
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EXAMPLE 4.13 Differentiate y " etanx.

SOLUTION

etanx is a function of a function, so the chain rule may be used.

Let  u " tanx ¡ d
d

u
x

" sec2 x

    y " eu ¡ 
d
d

e
y
u

u"

Using the chain rule

d
d

d
d

d
d

y
x

y
u

u
x

= ×

������������� � " eu sec2 x

������������� � " etanx sec2 x

EXAMPLE 4.14 Differentiate y " 1 � sinx
xcos

.                               

SOLUTION                           

 
1 � sinx

xcos  
is of the form u

v  
so the quotient rule can be used, with

 u " 1 � sin x and  v " cos x

¡ d
d

u
x

 " cos x and d
d

v
x

 " �sin x

The quotient rule is

d
d

d
d

d
dy

x

v u
x

u v
x

v
=

−
2

Substituting for u and v and their derivatives gives

d
d

y
x

x x x x
x

= − + −(cos )(cos ) ( sin )( sin )
(cos )

1
2

 
= + +cos sin sin

cos

2 2

2
x x x

x

 
= +1

2
sin

cos
x

x  
(using sin2 x � cos2 x " 1)

 " (sec2 x)(1 + sin x)
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EXERCISE 4C  1 Differentiate each of the following.

(i) 2 cos x � sin x (ii) tan x � 5 (iii) sin x � cos x

2 Use the product rule to differentiate each of the following. 

(i) x  tan x (ii) sin x  cos x (iii) ex sin x

3 Use the quotient rule to differentiate each of the following.

(i) 
sinx

x
 (ii) ex

xcos  (iii) x x
x

� cos
sin

4 Use the chain rule to differentiate each of the following.

(i) tan(x2 � 1) (ii) sin 2x  (iii) ln(sin x)

5 Use an appropriate method to differentiate each of the following.

(i) cosx  (ii) ex tan x (iii) sin 4x2

(iv) ecos 2x (v) 
sin

cos
x

x1 �    (vi) ln(tan x)

6 (i) Differentiate y " x  cos x .
(ii) Find the gradient of the curve y " x  cos x at the point where x " π.

(iii) Find the equation of the tangent to the curve y " x cos x at the point    
where x " π. 

(iv) Find the equation of the normal to the curve y " x  cos x at the point    
where x " π.

7 If y " ex cos 3x , find 
d
d

y
x

 and d
d

2

2
y

x  
and hence show that

d
d

d
d

2

2 2 10 0
y

x
y
x

y− + = .
 [MEI]

8 Consider the function y " e�x sin x , where �π " x " π.

(i) Find 
d
d

y
x

.

(ii) Show that, at stationary points, tan x " 1.

(iii) Determine the co-ordinates of the stationary points, correct to 
2 significant figures.

(iv) Explain how you could determine whether your stationary points are 
maxima or minima. You are not required to do any calculations.

[MEI]

9 The equation of a curve is y " x � 2 cos x. Find the x co-ordinates of the 
stationary points of the curve for 0 " x " 2U, and determine the nature of 
each of these stationary points.
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 June 2006]
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10  The equation of a curve is y " x � cos 2x. Find the x co-ordinates of the 
stationary points of the curve for which 0 " x " U, and determine the nature 
of each of these stationary points.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 November 2005]

11 The curve with equation y " e–x sin x has one stationary point for which 
0 " x " U.

(i) Find the x co-ordinate of this point.

(ii) Determine whether this point is a maximum or a minimum point.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 November 2007]

12 The curve y " 
ex

xcos , for −1
2
π # x # −1

2
π, has one stationary point. Find the  

  x co-ordinate of this point. 

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 November 2008]

Differentiating functions defined implicitly

All the functions you have differentiated so far have been of the form y " f(x). 
However, many functions cannot be arranged in this way at all, for example        
x3 � y3 " xy, and others can look clumsy when you try to make y the subject.

An example of this is the semi-circle x2 � y2 " 4, y $ 0, illustrated in figure 4.4.

Because of Pythagoras’ theorem, the curve is much more easily recognised in this 

form than in the equivalent y " 4 2� x .

When a function is specified by an equation connecting x and y which does not 
have y as the subject it is called an implicit function.

The chain rule 
d
d

d
d

d
d

y
x

y
u

u
x

= ×  and the product rule d
d

d
d

d
dx

uv u v
x

v u
x

( ) = +
 
are

used extensively to help in the differentiation of implicit functions.

By Pythagoras’ theorem, 
x2 + y2 = 22

O

P

2 y

x

O–2 2

y

x

2

Figure 4.4
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EXAMPLE 4.15 Differentiate each of the following with respect to x .

(i) y2 (ii) xy (iii) 3x2y3 (iv) sin y

SOLUTION

(i) 
d

dx (y2) " d
d

d
d

(chain rule)
y

y
y
x

2( ) ×
 

(chain rule)

  " 2y
y
x

d
d

(ii) d
dx

(xy) " x
d
d

y
x  

� y   (product rule)

(iii) d
dx

(3x2y3) " 3 x
x

y y
x

x2 3 3 2d
d

d
d

( ) ( )+( )  (product rule)

  " 3 3 22 2 3x y
x

y x× + ×( )d
d  (chain rule)

  " 3 3 22xy x
x

y
d
d

+( )
(iv) 

d
dx (sin y) " 

d
dy (siny) w�d

d
y
x

 (chain rule)

  " (cos y)�d
d

y
x

       

EXAMPLE 4.16 The equation of a curve is given by y3 � xy " 2.

(i) Find an expression for 
d
d

y
x

 in terms of x and y.

(ii) Hence find the gradient of the curve at (1, 1) and the equation of the tangent
 to the curve at that point.

SOLUTION

(i) y3 � xy " 2

¡  3y2d
d

y
x  

� (x
d
d

y
x  

� y) " 0

¡  (3y2 � x)
d
d

y
x

 " �y

¡    
d
d

y
x  

" 
−
+
y

y x3 2

(ii)   At (1, 1), 
d
d

y
x

 " �1
4

    

 Substitute x " 1, y " 1 into the expression for 
d
d

y
x

.

����¡  Using y � y1 " m(x � x1) the equation of the tangent is (y � 1) " �1
4(x � 1)

���¡     x � 4y � 5 " 0

y

y
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●? Figure 4.5 shows the graph of the curve with the equation y3 � xy " 2.

 Why is this not a function?

Stationary points

As before these occur where 
d
d

y
x  

" 0.

Putting 
d
d

y
x

 " 0 will not usually give values of x directly, but will give a

relationship between x and y. This needs to be solved simultaneously with the 
equation of the curve to find the co-ordinates.

EXAMPLE 4.17 (i) Differentiate x3 � y3 " 3xy with respect to x.
(ii) Hence find the co-ordinates of any stationary points.

SOLUTION

(i)   
d

d
d

d
d

dx
x

x
y

x
xy( ) ( ) ( )3 3 3+ =

  ¡   3x2 � 3y2 d
d

d
d

y
x

x
x

y= +( )3

(ii)  At stationary points, 
d
d

y
x  

" 0

¡   3x2 " 3y

¡     x2 " y

y

xO

Figure 4.5

y

Notice how it is not 
necessary to find an 

                        dy
expression for �� unless
                        dx

you are told to.
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To find the co-ordinates of the stationary points, solve

x2 " y
                         }      simultaneously
x3 � y3 " 3xy

Substituting for y gives

 x3 + (x2)3 = 3x(x2)

¡      x3 + x6 = 3x3

¡              x6 = 2x3

¡ x3(x3 – 2) = 0

¡ x = 0    or    x = 23

y = x2 so the stationary points are (0, 0) and 2 43 3,( ).
The stationary points are A and B in figure 4.6.

Types of stationary points

As with explicit functions, the nature of a stationary point can be determined by

considering the sign of  d
d

2

2
y

x  
either side of the stationary point.

EXAMPLE 4.18 The curve with equation sin x � sin y " 1 for 0 " x " π, 0 " y " π is shown in 
figure 4.7.

U x

y

U

OFigure 4.7

–2

2

2–2

B

y

xA

Figure 4.6
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(i) Differentiate the equation of the curve with respect to x and hence find the   
 co-ordinates of any stationary points.

(ii) Show that the points π π π π π π π π
6 6 6

5
6

5
6 6

5
6

5
6

, , , , , ,( ) ( ) ( ) ( )and all lie on the curve.

 Find the gradient at each of these points.
 What can you conclude about the natures of the stationary points?

SOLUTION

(i)                  sin x � sin y " 1

 ¡    cos x � (cos y)
d
d

y
x

 " 0 "1  

 ¡      
d
d

y
x

 " �cos
cos

x
y

At any stationary point d
d

y
x

 " 0   ¡   cos x " 0

        ¡   x " π
2 

(only solution in range)

Substitute in sin x � sin y " 1.

When x " π
2

,  sinx " 1   ¡   sin y " 0
         ¡   y " 0 or y " π

¡   stationary points at (π
2

, 0) and (π
2

, π).

(ii) sin π
6

1
2

= , sin 5
6

1
2

π =

 So, for each of the four given points, sin x � sin y " 12
1
2 1+ = .

 Therefore they all lie on the curve.

 The gradient of the curve is given by

 

d
d

y
x

x
y

= −cos
cos

 cos π
6

3
2

= ,  cos 5
6

3
2

π = −

At
d
d

At
d
d

π π

π π

6 6
1

6
5
6

1

3
2

3
2

3
2

3
2

, ,

, ,

( ) = − = −

( ) = − =
−

y
x

y
x

AAt
d
d

At
d
d

5
6 6

1

5
6

5
6

3
2

3
2

3
2

π π

π π

, ,

, ,

( ) = − =

( ) = −

−

−

−

y
x

y
x 33

2

1= −
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These results show that

π
2

0,( )
 
is a minimum π π

2
,( )

 
is a maximum

These points are confirmed by considering the sketch in figure 4.7 on page 100.

EXERCISE 4D  1 Differentiate each of the following with respect to x.

(i) y4 (ii) x2 � y3 � 5 (iii) xy � x � y

(iv) cos y (v) e(y � 2) (vi) xy3

(vii) 2x2y5 (viii) x � ln y � 3 (ix) xey � cos y

(x) x2 ln y (xi) xesin y (xii) x tan y � y tan x

2  Find the gradient of the curve xy3 " 5 ln y at the point (0, 1).

3 Find the gradient of the curve esin x � ecos y " e � 1 at the point  (π
2

, π
2).

4 (i) Find the gradient of the curve x2 � 3xy � y2 " x � 3y at the point (2, �1).
(ii) Hence find the equation of the tangent to the curve at this point.

5 Find the co-ordinates of all the stationary points on the curve x2 � y2 � xy " 3.

6 A curve has the equation (x � 6)(y � 4) " 2.

(i) Find an expression for 
d
d

y
x

 in terms of x and y.

(ii) Find the equation of the normal to the curve at the point (7, �2).

(iii) Find the co-ordinates of the point where the normal meets the curve again.

(iv) By rewriting the equation in the form y � a " b
x c�  identify any asymptotes 

and sketch the curve.

U
�

x

y

U

O �U
�

U
�

U
�

U
�

x

y

U

O �U
�

�U
�

U
�

U
�

x

y

U

O �U
�

U
�

U
�

U
�

x

y

U

O �U
�

�U
�

U
�
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7   A curve has the equation y " xx for x % 0.

(i) Take logarithms to base e of both sides of the equation.

(ii) Differentiate the resulting equation with respect to x.

(iii) Find the co-ordinates of the stationary point, giving your answer to 
3 decimal places.

(iv) Sketch the curve for x % 0.

8 The equation of a curve is 3x2 � 2xy � y2 " 6. It is given that there are two 
points on the curve where the tangent is parallel to the x axis.

(i) Show by differentiation that, at these points, y " �3x.

(ii) Hence find the co-ordinates of the two points.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q5 June 2006]

9 The equation of a curve is x3 + y3 = 9xy.

(i) Show that 
d
d

y
x

y x
y x

= −
−

3
3

2

2 .

(ii) Find the equation of the tangent to the curve at the point (2, 4), giving 
your answer in the form ax � by " c.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 November 2005]

10 The equation of a curve is x2 � y2 � 4xy � 3 " 0.

(i) Show that 
d
d

y
x

y x
y x

= −
−

2
2 .

(ii) Find the co-ordinates of each of the points on the curve where the 
tangent is parallel to the x axis.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2008]

11 The equation of a curve is x3 – x2y – y3 = 3.

(i) Find 
d
d

y
x

y x
y x

= −
−

2
2 

in terms of x and y.

(ii) Find the equation of the tangent to the curve at the point (2, 1), giving 
your answer in the form ax � by � c " 0.

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q3 November 2009]

12 The equation of a curve is xy(x � y) " 2a3, where a is a non-zero constant. 
Show that there is only one point on the curve at which the tangent is parallel 
to the x axis, and find the co-ordinates of this point.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2008]
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Parametric equations

When you go on a ride like the one in the picture, your body follows a very  
unnatural path and this gives rise to sensations which you may find exhilarating 
or frightening.

You are accustomed to expressing curves as mathematical equations. How would 
you do so in a case like this?

Figure 4.8 shows a simplified version of such a ride.

The passenger’s chair is on the end of a rod AP of length 2 m which is rotating 
about A. The rod OA is 4 m long and is itself rotating about O. The gearing of the 
mechanism ensures that the rod AP rotates twice as fast relative to OA as the rod 
OA does. This is illustrated by the angles marked on figure 4.8(b), at a time when OA 
has rotated through an angle θ.

At this time, the co-ordinates  
of the point P, taking O as the  
origin, are given by

x " 4 cos θ � 2 cos 3 θ
y " 4 sin θ � 2 sin 3 θ

(see figure 4.9).

PA

At the start

2 m4 mO

P

A

Some time later

2 θ
θ

θO

Figure 4.8

AP has in total 
turned through 

angle 3θ.

(a) (b)

P

A

2

�

x

y

3 θ
2 sin 3 θ

2 cos 3 θ

4 cos θ

4 sin θθ
O

Figure 4.9



P
aram

etric eq
u

atio
n

s

105

P2 

4

These two equations are called parametric equations of the curve. They do not 
give the relationship between x and y directly in the form y " f(x) but use a third 
variable, θ, to do so. This third variable is called the parameter.

To plot the curve, you need to substitute values of θ and find the corresponding 
values of x and y.

Thus θ " 0° ¡ x " 4 � 2 " 6
  y " 0 � 0 " 0  Point (6, 0)

θ " 30° ¡ x " 4 w 0.866 � 0 " 3.464
  y " 4 w 0.5 � 2 w 1 " 4 Point (3.46, 4)

and so on.

Joining points found in this way reveals the curve to have the shape shown in 
figure 4.10.

●? At what points of the curve would you feel the greatest sensations?

Graphs from parametric equations

Parametric equations are very useful in situations such as this, where an  
otherwise complicated equation may be expressed reasonably simply in  
terms of a parameter. Indeed, there are some curves which can be given by 
parametric equations but cannot be written as cartesian equations (in terms of 
x and y only).

The next example is based on a simpler curve. Make sure that you can follow the 
solution completely before going on to the rest of the chapter.

x

y

�

2

±2

±�

� θ   3��

θ   ��θ   1���

θ   33��
θ   2���� 3���

θ   ���� 12��

θ   ���

θ   2���

θ   1���

θ   21��

2±2±�±� � �

Figure 4.10
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EXAMPLE 4.19 A curve has the parametric equations x " 2t, y " 36
2t

.

(i) Find the co-ordinates of the points corresponding to t " 1, 2, 3, �1, �2 and �3.
(ii) Plot the points you have found and join them to give the curve.
(iii) Explain what happens as t q�0.

SOLUTION

(i)
 

t –3 –2 –1   1 2 3

x –6 –4 –2   2 4 6

y   4   9 36 36 9 4

 The points required are (�6, 4), (�4, 9), (�2, 36), (2, 36), (4, 9) and (6, 4).
(ii) The curve is shown in figure 4.11.

(iii) As t q�0, x q�0 and y q�h. The y axis is an asymptote for the curve.

EXAMPLE 4.20 A curve has the parametric equations x " t 2, y " t 3 � t.

(i) Find the co-ordinates of the points corresponding to values of t from �2  to 
�2 at half-unit intervals.

(ii) Sketch the curve for �2 " t " 2.
(iii) Are there any values of x for which the curve is undefined?

SOLUTION

(i)
 

t –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

x   4    2.25 1    0.25 0 0.25 1 2.25 4

y –6 –1.875 0   0.375 0 –0.375 0 1.875 6

10

20

30

40
t = 1t = –1

t = 2t = –2

t = 3t = –3

20–2–4–6 4 6 x

y

Figure 4.11
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(ii) 

(iii) The curve in figure 4.12 is undefined for x # 0.

Graphic calculators can be used to sketch parametric curves but, as with cartesian 
curves, you need to be careful when choosing the range. 

Finding the equation by eliminating the parameter

For some pairs of parametric equations, it is possible to eliminate the parameter 
and obtain the cartesian equation for the curve. This is usually done by making 
the parameter the subject of one of the equations, and substituting this expression 
into the other.

EXAMPLE 4.21 Eliminate t from the equations x " t 3 � 2t 2, y " t
2

.

SOLUTION

y " t
2

     ¡ t " 2y.

Substituting this in the equation x " t 3 � 2t 2 gives

x " (2y)3 � 2(2y)2 or x " 8y 3 � 8y 2.

x

y

�

2

±2

±�

�

�

1 �

±�

32

Figure 4.12
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Parametric differentiation

To differentiate a function which is defined in terms of a parameter t , you need 
to use the chain rule:

d
d

d
d

d
d

y
x

y
t

t
x

= × .

Since

d
d d

d

t
x x

t

" 1

it follows that

d
d

d
d
d
d

y
x

y
t
x
t

"

provided that d
d

x
t

 | 0.

EXAMPLE 4.22 A curve has the parametric equations x " t 2, y " 2t. 

(i) Find d
d

y
x

 in terms of the parameter t .

(ii) Find the equation of the tangent to the curve at the general point (t 2, 2t).
(iii) Find the equation of the tangent at the point where t " 3.
(iv) Eliminate the parameter, and hence sketch the curve and the tangent at the 

point where t " 3.

SOLUTION

(i) x " t 2 ¡ d
d

x
t

 " 2t

y " 2t ¡ 
d
d

y
t

 " 2

d
d

d
d
d
d

y
x t t

y
t
x
t

" " "2
2

1

(ii) Using y � y1 " m(x � x1) and taking the point (x1, y1) as (t 2, 2t), the equation 
of the tangent at the point (t 2, 2t) is

        y � 2t " 1
t

 (x � t 2)

¡     ty � 2t 2 " x � t 2

¡ x � ty � t 2 " 0

(iii) Substituting t " 3 into this equation gives the equation of the tangent at the 
point where t " 3.

 The tangent is x � 3y � 9 " 0.

This equation still contains the  
parameter, and is called the equation 
of the tangent at the general point. 
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(iv) Eliminating t from x " t 2, y " 2t gives

 x " 
y
2

2⎛
⎝⎜

⎞
⎠⎟      or y2 " 4x .

This is a parabola with the x axis as its line of symmetry.

The point where t " 3 has co-ordinates (9, 6).

The tangent x � 3y � 9 " 0 crosses the axes at (0, 3) and (�9, 0).

The curve is shown in figure 4.13.

EXAMPLE 4.23 A curve has parametric equations x " 4 cos θ, y " 3 sin θ. 

(i) Find d
d

y
x

 at the point with parameter θ.

(ii) Find the equation of the normal at the general point (4 cos θ, 3 sin θ).

(iii) Find the equation of the normal at the point where θ "��π
4

.

(iv) Find the co-ordinates of the point where θ " π
4

.

(v) Show the curve and the normal on a sketch.

SOLUTION

(i) x " 4 cos θ ¡ d
d

x
θ

  " �4 sin θ

 y " 3 sin θ ¡ d
d

y
θ

  " 3 cos θ

d
d

d
d
d
d

y
x

y

x
= = −

= −

θ

θ

θ
θ

θ
θ

3
4

3
4

cos
sin

cos
sin

x

y

�

�

±�

±�

3

�

��� ��

Figure 4.13
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(ii) The tangent and normal are perpendicular, so the gradient of the normal is

 
� 1

d
d

y
x

    which is       � 4
3

sin
cos

θ
θ

.

  Using y � y1 " m(x � x1) and taking the point (x1, y1) as (4 cos θ, 3 sin θ), the 
equation of the normal at the point (4 cos θ, 3 sin θ) is

                                                     y � 3 sin θ " 4
3

sin
cos

θ
θ

(x � 4 cos θ)

¡                 3y  cos θ � 9 sin θ cos θ " 4x  sin θ � 16 sin θ cos θ
¡ 4x  sin θ � 3y  cos θ � 7 sin θ cos θ " 0

(iii) When θ " π
4

, cos θ " 1

2 
and sin θ " 1

2
, so the equation of the normal is

  4x w 1

2 
� 3y w 1

2 
 � 7 w 1

2 
w 1

2 
 " 0

� ¡         4 2x � 3 2y � 7 " 0

� ¡              4x � 3y � 4.95 " 0 (to 2 decimal places)

(iv) The co-ordinates of the point where θ " π
4 

are

 4
4

3
4

4
1

3
1

cos , sin ,π π( ) = × ×( )  
 ~ (2.83, 2.12)

(v) 

m1m2 " –1 for 
perpendicular lines.

1

2
1

2

This curve is  
an ellipse.

x

y

2±� �

3

±3

�2��3� 2�12�

Figure 4.14



P
aram

etric d
ifferen

tiatio
n

111

P2 

4

Stationary points

When the equation of a curve is given parametrically, the easiest way to 

distinguish between stationary points is usually to consider the sign of  d
d

y
x

 . If you 

use this method, you must be careful to ensure that you take points which are to 
the left and right of the stationary point, i.e. have x co-ordinates smaller and 
larger than those at the stationary point. These will not necessarily be points 
whose parameters are smaller and larger than those at the stationary point.

EXAMPLE 4.24 Find the stationary points of the curve with parametric equations x " 2t � 1,  
y " 3t � t 3, and distinguish between them.

SOLUTION

x " 2t � 1 ¡ d
d

x
t

 " 2

y " 3t � t3 ¡ d
d

y
t

 " 3 � 3t 2

d
d

d
d
d
d

y
x

t t
y
t
x
t

= = − = −3 3
2

3 1
2

2 2( )

Stationary points occur when d
d

y
x

 " 0:

¡       t2 " 1       ¡       t " 1       or       t " �1

At t " 1: x " 3, y " 2

At t " 0.9: x " 2.8 (to the left); d
d

y
x

 " 0.285 (positive)

At t " 1.1: x " 3.2 (to the right); d
d

y
x

 " �0.315 (negative)

There is a maximum at (3, 2).

At t " �1: x " �1, y " 2

At t " �1.1: x " �1.2 (to the left); d
d

y
x

 " �0.315 (negative)

At t " �0.9: x " �0.8 (to the right); d
d

y
x

 " 0.285 (positive)

There is a minimum at (�1, �2).

An alternative method

 Alternatively, to find 
d
d

2

2
y

x
 when 

d
d

y
x

 is expressed in terms of a parameter requires a 

further use of the chain rule:

d d d d d d2

2
y

x x
y
x t

y
x

t
xd d d d d d

= ⎛
⎝⎜

⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟ × .
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EXERCISE 4E  1 For each of the following curves, find d
d

y
x

 in terms of the parameter.

(i) x " 3t 2 (ii) x " θ � cos θ
 y " 2t 3  y " θ � sin θ

(iii) x " t � 1
t

    (iv) x " 3 cos θ

 y " t � 1
t

             
y " 2 sin θ

(v) x " (t � 1)2 (vi) x " θ sin θ � cos θ
 y " (t � 1)2  y " θ cos θ � sin θ
(vii) x " e2t � 1 (viii) x " t

t1 �
        

 
y " et

  y " t
t1 �

2 A curve has the parametric equations x " tan θ, y " tan 2θ. Find

(i) the value of d
d

y
x

 when θ " π
6

(ii) the equation of the tangent to the curve at the point where θ " π
6

(iii) the equation of the normal to the curve at the point where θ " π
6

.

3 A curve has the parametric equations x " t 2, y " 1 � 1
2t

 for t % 0. Find

(i) the co-ordinates of the point P where the curve cuts the x axis

(ii) the gradient of the curve at this point

(iii) the equation of the tangent to the curve at P

(iv) the co-ordinates of the point where the tangent cuts the y axis.

4 A curve has parametric equations x " at 
2, y " 2at, where a is constant. Find

(i) the equation of the tangent to the curve at the point with parameter t 

(ii) the equation of the normal to the curve at the point with parameter t 

(iii) the co-ordinates of the points where the normal cuts the x and y axes.

5 A curve has parametric equations x " cos θ, y " cos 2θ.

(i) Show that d
d

y
x

 " 4 cos θ.

(ii) By writing d
d

y
x

 in terms of x , show that 
d
d

2

2
y

x
 � 4 " 0.

6 The parametric equations of a curve are x " at , y " b
t

, where a and b are 
constant. Find in terms of a, b and t 

(i) 
d
d

y
x

 

(ii) the equation of the tangent to the curve at the general point (at, b
t )

(iii) the co-ordinates of the points X and Y where the tangent cuts the x and y axes.

(iv) Show that the area of triangle OXY is constant, where O is the origin.
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7  The diagram shows a sketch of the curve given parametrically in terms of t by 
the equations x " 4t and y " 2t 2 where t takes positive and negative values.

P is the point on the curve with parameter t.
(i) Show that the gradient at P is t.

(ii) Find and simplify the equation of the tangent at P.

The tangents at two points Q (with parameter t1) and R (with parameter t2) 
meet at S.
(iii) Find the co-ordinates of S.

(iv) In the case when t1 � t2 " 2 show that S lies on a straight line. 
Give the equation of the line.

 [MEI, adapted]

8 The diagram shows a sketch of the curve given parametrically in terms of t by 
the equations x " 1 � t2, y " 2t � 1.

(i) Show that the point Q(0, 3) lies on the curve, stating the value of t 
corresponding to this point.

(ii) Show that, at the point with parameter t ,

d 1y
x td
= − .

(iii) Find the equation of the tangent at Q.

(iv) Verify that the tangent at Q passes through the point R(4, �1).

(v) The other tangent from R to the curve touches the curve at the point S and 
has equation 3y � x � 7 " 0. Find the co-ordinates of S.

[MEI]

x

y

O

S

O R x

y

Q

Not to scale
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9 The diagram shows a sketch of the curve with parametic equations x " 1 � 2t , 
y " t2. The tangent and normal at P are also shown.

(i) Show that the point P(5, 4) lies on the curve by stating the value of t 
corresponding to this point.

(ii) Show that, at the point with parameter t , 
d
d

y
x

 " �t.

(iii) Find the equation of the tangent at P.

(iv) The normal at P cuts the curve again at Q. Find the co-ordinates of Q.

 [MEI]

10 A particle P moves in a plane so that at time t its co-ordinates are given by          
x " 4 cos t , y " 3 sin t. Find

(i) 
d
d

y
x

 in terms of t

(ii) the equation of the tangent to its path at time t 

(iii) the values of t for which the particle is travelling parallel to the line x � y " 0.

11 (i) By differentiating 1
cos θ , show that if y " sec θ then 

d
d

y
θ " sec θ tan θ.

(ii) The parametric equations of a curve are

x " 1 � tan θ,       y " sec θ,

 for −1
2π # θ # −1

2π. Show that 
d
d

y
x

 " sin θ.

(iii) Find the co-ordinates of the point on the curve at which the gradient of 
the curve is 12.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q5 June 2005]

12 The parametric equations of a curve are

x " 3t � ln(t � 1),       y " t2 � 1,      for t % 1.

(i) Express 
d
d

y
x

 in terms of t.

(ii) Find the co-ordinates of the only point on the curve at which the 
gradient of the curve is equal to 1.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 June 2007]

O

Q

y

x

P(5, 4)
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13 The parametric equations of a curve are

x = 4 sin θ,     y = 3 – 2 cos 2θ,

 where  −1
2π # θ # −1

2π. Express 
d
d

y
x  

in terms of θ, simplifying your answer as 
far as possible.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q4 June 2009]

14 The parametric equations of a curve are

x " 1 � e�t,      y " et � e�t.

(i) Show that 
d
d

e
y
x

t= −2 1.

(ii) Hence find the exact value of t at the point on the curve at which the 
gradient is 2.

 [Cambridge International AS & A Level Mathematics 9709, Paper 22 Q4 November 2009]

15 The parametric equations of a curve are 

x " 2θ � sin 2θ,      y " 1 � cos 2θ.

Show that 
d
d

y
x  

" tan θ.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 June 2006]

16 The parametric equations of a curve are

x " a cos3 t,     y " a sin3 t,

where a is a positive constant and 0 # t # −1
2π.

(i) Express 
d
d

y
x  

in terms of t.

(ii) Show that the equation of the tangent to the curve at the point with 
parameter t is

x sin t � y cos t " a sin t cos t.

(iii) Hence show that, if this tangent meets the x axis at X and the y axis at Y, 
then the length of XY is always equal to a.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 June 2009]
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KEY POINTS

1 y " kxn ¡ 
d
d

y
x

�" knxn�1 where k and n are real constants.

2 Chain rule: 
d
d

d
d

d
d

y
x

y
u

u
x

= ×

3 Product rule (for y " uv): 
d
d

d
d

d
d

y
x

v u
x

u v
x

= + . 

4 Quotient rule for
d
d

d
d

d
dy u

v
y
x

v u
x

u v
x

v
=( ) =

−
: 2 .

5 
d
d d

d

y
x x

y

" 1
.

6 
d

d
ln

x
x

x
( ) " 1

7 
d

d
e e

x
x x( ) "

8 
d

dx
kx k kx(sin ) cos"

     
d

dx
kx k kx(cos ) sin= −

     
d

dx
kx k kx(tan ) sec" 2

9 An implicit function is one connecting x and y where y is not the subject.
When you differentiate an implicit function:

 ● differentiating y2 with respect to x gives 2y
y
x

d
d

 ● differentiating 4x3y2 with respect to x gives 12x2 w y2 � 4x3 w 2y
y
x

d
d

.

The derivative of any constant is 0.

10 In parametric equations the relationship between two variables is 
expressed by writing both of them in terms of a third variable or 
parameter.

11 To draw a graph from parametric equations, plot the points on the curve  
given by different values of the parameter.

12  
d
d

provided that d
d

d
d
d
d

y
x

x
t

y
t
x
t

= ≠ 0.
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Integration

Every picture is worth a thousand words.
Traditional Chinese proverb

Integrals involving the exponential function

Since you know that 

d
dx

 (eax�b) " aeax�b,

you can see that 

µeax+b dx " 1
a

 eax+b � c.                    

This increases the number of functions which you are able to integrate, as in the 
following example. 

EXAMPLE 5.1 Find the following integrals.

(i) µe 2x–3 dx (ii) µ5

1
6e3x dx 

SOLUTION

(i) µe2x–3 dx " 1
2 e2x–3 � c      

(ii) µ1

5
6e3x dx " [6

3

3e x]5

1

  " [2e3x]5
1

 " 2(e15 � e3)
 " 6.54 w 106          (to 3 significant figures)

Integrals involving the natural logarithm function

You have already seen that

µ 1
x  

dx " ln x � c.

There are many other integrals that can be reduced to this form.

117

5
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EXAMPLE 5.2 Evaluate µ2

5 1
2x  

dx.

SOLUTION

1
2

 µ2

5 1
x  

dx " 1
2[ln x]5

2

 " 12(ln 5 � ln 2) 

 " 0.458          (to 3 significant figures)

In this example the 12 was taken outside the integral, allowing the standard result 

for 1
x  

to be used. 

Since

y " ln(ax � b) ¡ d
d

y
x  

" a
ax b�

So 

µ a
ax b

x ax b c+ = + +d ln( )  

and 

µ 1 1
ax b

x
a

ax b c+ = + +d ln( )  

EXAMPLE 5.3 Find µ 0

2 1
5 3x

x� d .

SOLUTION   

µ 0

2

0

2
1

5 3
1
5

5 3

13 3

0 293

1
5

1
5

x
x x+ = +⎡

⎣⎢
⎤
⎦⎥

= −

=

d ln( )

ln ln

.  (to 3 significant figures)

Extending the domain for logarithmic integrals

The use of µ 1
x  

dx " ln x � c has so far been restricted to cases where x ! 0, since 

logarithms are undefined for negative numbers.

Look, however, at the area between �b and �a on the left-hand branch 

of the curve y " 1
x  

in figure 5.1. You can see that it is a real area, and that it must 

be possible to evaluate it.

c mean ‘an arbitrary constant’ and so 
does not necessarily have the same 
value from one equation to another.

]2

0
[
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A

B–a–b

O x

y

ba

Figure 5.1

ACTIVITY 5.1 1 What can you say about the areas of the two shaded regions?

 ●  2 Try to prove your answer to part 1 before reading on.

Proof

Let A " µ�b

�a 1
x  

dx.

Now write the integral in terms of a new variable, u, where u " �x.
This gives new limits: x " �b ¡ u " b
 x " �a ¡  u " a.

d
d

u
x

 " �1 ¡�dx " �du.

So the integral becomes  

A " µ b

a  1
�u  

(�du)

 " µ b

a 

 
1
u  

du

 " [ln a � ln b]

 " �[ln b � ln a] " �area B

So the area has the same size as that obtained if no notice is taken of the fact that 
the limits a and b have minus signs. However it has the opposite sign, as you 
would expect because the area is below the axis.

Consequently the restriction that x ! 0 may be dropped, and the integral is written

µ 1
x  

dx " ln a x a � c.

Similarly, µ f '
f

( )
( )

x
x  dx " ln a f(x) a � c.



In
te

g
ra

ti
o

n

120

P2 

5

EXAMPLE 5.4 Find the value of µ5

7 1
4 � x  

dx.

SOLUTION

To make the top line into the differential of the bottom line, you write the 
integral in one of two ways.

�µ5

7 �
�
1

4 x  
dx " �[ln a 4 � x a]7

5 �µ5

7 1
4x �  

dx " �[ln a x � 4 a]7
5

 " �[(ln a �3 a) � (ln  a �1a)]  " �[ln 3 � ln 1]

 " �[ln 3 � ln 1]  " �1.10 (to 3 s.f.)

 " �1.10 (to 3 s.f.)  

!  Since the curve y " 1
x  

is not defined at

the discontinuity at x " 0 (see figure  
5.2), it is not possible to integrate across  
this point.

 Consequently in the integral µ
q

p
 1
x  

dx both

 the limits p and q must have the same 
 sign, either � or �. The integral is invalid 

otherwise.

 ●  The equation of a curve is y " p x
p x

1

2

( )
( ) 

where p1(x) and p2(x) are polynominals. 
 
How can you tell from the equation whether the curve has a discontinuity?

 How can you prove y " x2 � 2x � 3 has no discontinuities?

EXERCISE 5A  1 Find the following indefinite integrals.

(i) µ 3
x  

dx (ii) µ 1
4x  

dx (iii) µ 1
5x �  

dx (iv) µ 1
2 9x �  

dx 

2 Find the following indefinite integrals.

(i) µe3x dx (ii) µe�4x dx (iii) µe�x
3

 
dx

(iv) µ 10
5e x  

dx (v) µe
e

3

2
4x

x
�

 
dx

x

y

O

 Figure 5.2
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3  Find the following definite integrals. 
Where appropriate give your answers to 3 significant figures.

(i) µ0

4
 4e2x dx (ii) µ1

3 4
2 1x �  

dx 

(iii) µ–1

1
(ex + e–x) dx  (iv) µ�2

1
e3x �2 dx 

4 The graph of y " x � 4
x

 is shown below.

(i) Find the co-ordinates of the minimum point, P, and the maximum point, Q.

(ii) Find the area of each shaded region.

5 The diagram illustrates the graph of y " ex. The point A has co-ordinates
(ln 5, 0), B has co-ordinates (ln 5, 5) and C has co-ordinates (0, 5).

(i) Find the area of the region OABE enclosed by the curve y " ex, the x axis, 
the y axis and the line AB. Hence find the area of the shaded region EBC.

Q

±�
O

P

x

y

�

O A x

C

y

B (ln 5, 5)

E
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 (ii) The graph of y " ex is transformed into the graph of y " ln x. 
Describe this transformation geometrically.

(iii) Using your answers to parts (i) and (ii), or otherwise, show that

µ1

5 
ln x dx " 5 ln 5 � 4.

(iv) Deduce the values of

 (a) µ1

5 
ln(x3) dx

 (b) µ1

5 
ln(3x) dx.

   [MEI, adapted]

6 (i) Differentiate ln(2x � 3).
(ii) Hence, or otherwise, show that

µ
3

�1

1
2 3

3
x

x+ =d ln .

(iii) Find the quotient and remainder when 4x 2 � 8x is divided by 2x � 3.

(iv) Hence show that

µ
3

�1

4 8
2 3

12 3 3
2x x
x

x+
+ = −d ln .

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2006]

7 A curve is such that 
d
d

y
x

 " e2x � 2e�x. The point (0, 1) lies on the curve.

(i) Find the equation of the curve.

(ii) The curve has one stationary point. Find the x co-ordinate of this point 
and determine whether it is a maximum or a minimum point.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 November 2005]

8 (i) Find the equation of the tangent to the curve y " ln(3x � 2) at the point 
where x " 1.

(ii) (a) Find the value of the constant A such that

6
3 2

2
3 2

x
x

A
x− ≡ + − .

(b) Hence show that µ2

6 6
3 2

8 8
3

2x
x

x− = +d ln .

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q8 June 2009]

9 Find the exact value of the constant k for which µ1

k
 

1
2 1

1
x

x− =d .

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 November 2007]
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INVESTIGATIONS

A series for ex

The exponential function can be written as the infinite series

ex " a0 � a1x � a2x 2 � a3x 3 � a4x 4 � …   (for x ! !)

where a0, a1, a2, … are numbers.

You can find the value of a0 by substituting the value zero for x. 

Since e0 "1, it follows that 1 " a0 � 0 � 0 � 0 � … , and so a0 " 1.

You can now write: ex " 1 � a1x � a 2x2 �a 3x3� a 4x4 � … .

Now differentiate both sides: ex " a1 � 2a 2x � 3a 3x2 � 4a 4x3 � … ,

and substitute x " 0 again: 1 " a1 � 0 � 0 � 0 � … , and so a1 " 1 also.

Now differentiate a second time, and again substitute x " 0. This time you find 
a 2. Continue this procedure until you can see the pattern in the values of a 0, a 1, 
a 2, a 3, … .

When you have the series for ex, substitute x " 1. The left-hand side is e1 or e, and 
so by adding the terms on the right-hand side you obtain the value of e. You will 
find that the terms become small quite quickly, so you will not need to use very 
many to obtain the value of e correct to several decimal places.

If you are also studying statistics you will meet this series expansion of ex in 
connection with the Poisson distribution.

Compound interest

You win $100 000 in a prize draw and are offered two investment options.
A  You are paid 100% interest at the end of 10 years, or
B  You are paid 10% compound interest year by year for 10 years.
Under which scheme are you better off?

 final money $200 000
Clearly in scheme A, the ratio R "   ���������� is �������� " 2.
 original money $100 000

What is the value of the ratio R in scheme B?

Suppose that you asked for the interest to be paid in 20 half-yearly instalments of 
5% each (scheme C). What would be the value of R in this case?

Continue this process, investigating what happens to the ratio R when the 
interest is paid at increasingly frequent intervals.

Is there a limit to R as the time interval between interest payments tends to zero?
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Integrals involving trigonometrical functions

Since  
d

dx
ax b a ax b(sin( )) cos( )+ = +    

it follows that cos( ) sin( )ax b x
a

ax b c+ = + +∫ d 1   

Similarly, since d
dx

ax b a ax b(cos( )) sin( )+ = − +  

it also follows that sin( ) cos( )ax b x
a

ax b c+ = − + +∫ d 1  

Also d
dx

ax b a ax b(tan( )) sec ( )+ = +2    

and so sec ( ) tan( )2 1ax b x
a

ax b c+ = + +∫ d    

EXAMPLE 5.5 Find 

(i) sec2x xµ d  (ii) sin2x xµ d  (iii) cos( )3x x−∫ π d .

SOLUTION  

(i) sec tan2x x x c∫ = +d

(ii) sin cos2 21
2x x x c∫ = − +d

(iii) cos( ) sin( )3 31
3x x x c− = − +∫ π πd

EXAMPLE 5.6 Find the exact value of (sin cos2 4
0
3 x x x−∫
π

) d .

SOLUTION 

(sin cos cos sin2 4 2 4

1
2

0
3

0
31

2
1
4x x x x x− = − −⎡⎣ ⎤⎦

= −

∫
π π

) d

ccos sin cos sin2
3

1
4

4
3

1
2

0 1
4

0
0π π−⎡

⎣⎢
⎤
⎦⎥
− − −⎡
⎣⎢

⎤
⎦⎥

= −

=

11
2

1
2

1
4

3
2

1
2

1

1
4

× −⎡
⎣⎢

⎤
⎦⎥
− × −⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
− − ×⎡
⎣⎢

⎤
⎦⎥

= ++ +

= +

= +

3
8

1
2

3
8

3
4

6 3
8

µ�a cos(ax � b) dx " sin(ax � b) � c

µ��a sin(ax � b) dx " cos(ax � b) � c

0
0( )00( ) 0

0( ) 0
0( )
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Using trigonometrical identities in integration

Sometimes, when it is not immediately obvious how to integrate a function 
involving trigonometrical functions, it may help to rewrite the function using 
one of the trigonometrical identities.

EXAMPLE 5.7 Find µ  sin2 x dx.

SOLUTION

Use the identity

cos 2x " 1 � 2 sin2 x.

(Remember that this is just one of the three expressions for cos 2x.)

This identity may be rewritten as

sin2 x " 12(1 � cos 2x).

By putting sin2x in this form, you will be able to perform the integration.

µ  sin2 x dx " 12µ  (1 � cos 2x) dx

  " 12(x � 12 sin 2x) � c

  " 12x � 1
4 sin 2x � c

You can integrate cos2 x in the same way, by using cos2 x " 12(cos 2x � 1). Other 
even powers of sin x or cos x can also be integrated in a similar way, but you have 
to use the identity twice or more.

EXAMPLE 5.8 Find µ  cos4 x dx.

SOLUTION

First express cos4 x as (cos2 x)2:

         cos4 x " [1
2(cos 2x � 1)]2

 " 1
4(cos2 2x � 2 cos 2x � 1)

Next, apply the same identity to cos2 2x :

               cos2 2x " 12(cos 4x � 1)

Hence cos4 x " 1
4(1

2 cos 4x � 12 � 2 cos 2x � 1)
  " 1

4(1
2 cos 4x � 2 cos 2x � 3

2)
  " 18  cos 4x � 12 cos 2x � 3

8
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This can now be integrated.

µ  cos4 x dx " µ  (1
8 cos 4x � 12 cos 2x � 3

8) dx

  " 1
32 sin 4x � 1

4
 sin 2x � 3

8x � c

EXERCISE 5B 1  Integrate the following with respect to x.

(i)  sin x  � 2 cos x (ii) 3 cos x � 2 sin x (iii) 5 sin x � 4 cos x

 (iv) 4 sec2 x (v) sin(2x � 1) (vi)  cos(5x � U)

 (vii) 6 sec2 2x (viii) 3 sec2 3x � sin 2x (ix) 4 sec2 x � cos 2x

2 Find the exact value of the following.

(i) sinx x
0
3
π

∫ d  (ii) sec2
0
4 x x
π

∫ d  

(iii) cosx xπ

π

6

3∫ d  (iv) sin 2
0

2
3 x x
π

∫ d  

(v) cos3
0

5
6 x x
π

∫ d  (vi)  sec2

8

6 2x xπ

π

∫ d

(vii) cos 2
20

x x+( )∫ ππ
d  (viii) (sec cos )2

0
4 4x x x+∫
π

d  

(ix) (cos sin )x x x+∫ 2
0
6
π

d

3 (i) Show that sin x cos x " 12 sin 2x. 

(ii) Hence find the exact value of sin cosx x x
0
3
π

∫ d .

4 Use a suitable trigonometric identity to help you find these.

(i) (a) cos2x xµ d   (b) cos2
0
2 x x
π

∫ d   

(ii)  (a) sin2x xµ d  (b)  sin2
0
3 x x
π

∫ d  

5 (i) By expanding sin(2x � x) and using double-angle formulae, show that

sin 3x " 3 sin x � 4 sin3 x.

(ii) Hence show that

sin .3
0

1
3 5

24x xd =∫
π

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2005]
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6   The diagram shows the part of the curve y " sin2 x for 0 " x " U.

(i) Show that 
d
d

y
x

 " sin 2x.

(ii) Hence find the x co-ordinates of the points on the curve at which the 
gradient of the curve is 0.5.

(iii) By expressing sin2 x in terms of cos 2x, find the area of the region bounded 
by the curve and the x axis between 0 and U.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 November 2005]

7 (i) Express cos2 x in terms of cos 2x.
(ii) Hence show that

cos2
0

1
3 1

6
1
8x xd = +∫

π
π �3.

(iii) By using an appropriate trigonometrical identity, deduce the exact value of

sin .2
0

1
3 x xd
π

∫
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2007]

8 (i) Prove the identity

(cos x � 3 sin x)2 } 5 � 4 cos 2x � 3 sin 2x.

(ii) Using the identity, or otherwise, find the exact value of

(cos sin ) .x x x+∫ 3 2
0

1
4 d
π

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 November 2007]

9 (i) Show that cos2
0

1
4 1

2x xd
π

∫ = .

(ii) By using an appropriate trigonometrical identity, find the exact value of

 
3 2

1
6

1
3 tan x xd
π

π
∫ .

 [Cambridge International AS & A Level Mathematics 9709, Paper 22 Q4 June 2010]

O x

y

U
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Numerical integration

There are times when you need to find the area under a graph but cannot do this 
by the integration methods you have met so far.

 ●  The function may be one that cannot be integrated algebraically. (There are 
many such functions.)

 ● The function may be one that can be integrated algebraically but which 
requires a technique with which you are unfamiliar.

 ●  It may be that you do not know the function in algebraic form, but just have a 
set of points (perhaps derived from an experiment).

In these circumstances you can always find an approximate answer using a 
numerical method, but you must:

(i) have a clear picture in your mind of the graph of the function, and how your 
method estimates the area beneath it

(ii) understand that a numerical answer without any estimate of its accuracy, or 
error bounds, is valueless.

The trapezium rule

In this chapter just one numerical method of integration is introduced, namely 
the trapezium rule. As an illustration of the rule, it is used to find the area 

under the curve y " 5 2x x�
 
for values of x between 0 and 4. 

It is in fact possible to integrate this function algebraically, but not using the 
techniques that you have met so far. 

Note

You should not use a numerical method when an algebraic (sometimes called 

analytic) technique is available to you. Numerical methods should be used only 

when other methods fail.

Figure 5.3 shows the area approximated by two trapezia of equal width.

y

x

1

2

3

O 1 2 3 4 5

y =  5x – x 2

A B

Figure 5.3 
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Remember the formula for the area of a trapezium, Area " 1
2h(a � b), where a and 

b are the lengths of the parallel sides and h the distance between them.

In the cases of the trapezia A and B, the parallel sides are vertical. The left-hand 
side of trapezium A has zero height, and so the trapezium is also a triangle.

When x " 0 ¡ y " 0  " 0

When x " 2 ¡ y " 6  " 2.4495  (to 4 d.p.)

When x " 4, ¡ y " 4  " 2

The area of trapezium A " 1
2 w 2 w (0 � 2.4495) " 2.4495

The area of trapezium B " 1
2 w 2 w (2.4495 � 2) " 4.4495

 Total    6.8990

For greater accuracy you can use four trapezia, P, Q, R and S, each of width 
1 unit as in figure 5.5. The area is estimated in just the same way.

Trapezium P: 1
2 w 1 w (0 � 2) " 1.0000 

Trapezium Q: 1
2 w 1 w (2 � 2.4495) " 2.2247

Trapezium R: 1
2 w 1 w (2.4495 � 2.4495) " 2.4495

Trapezium S: 1
2 w 1 w (2.4495 � 2) " 2.2247

                                   Total    7.8990

�2� �2� ������

%A 2����� 2����� 2

Figure 5.4 

y

P 4 5 S

x

1

2

3

O 1 2 3 4 5

�2 � 2

Figure 5.5

These figures are 
given to 4 decimal 

places but the 
calculation has been 
done to more places 

on a calculator.
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Accuracy

In this example, the first two estimates are 6.8989… and 7.8989… . You can see 
from figure 5.5 that the trapezia all lie underneath the curve, and so in this case the 
trapezium rule estimate of 7.8989… must be too small. You cannot, however, say 
by how much. To find that out you will need to take progressively more strips to 
find the value to which the estimate converges. Using 8 strips gives an estimate of 
8.2407…, and 16 strips gives 8.3578… . The first figure, 8, looks reasonably certain 
but it is still not clear whether the second is 3, 4 or even 5. You need to take even 
more strips to be able to decide. In this example, the convergence is unusually 
slow because of the high curvature of the curve.

ACTIVITY 5.2 Use a graph-drawing program with the capability to calculate areas using 
trapezia. Calculate the area using progressively more strips and observe the 
convergence.

●? It is possible to find this area without using calculus at all. 

 How can this be done? How close is the 16-strip estimate?

The procedure

In the previous example, the answer of 7.8990 from four strips came from adding 
the areas of the four trapezia P, Q, R and S:

1
2 w 1 w (0 � 2) � 12 w 1 w (2 � 2.4495) � 12 w 1 w (2.4495 � 2.4495) � 1

2 w 1 w (2.4495 � 2)

and this can be written as

1
2 w 1 w [0 � 2 w (2 � 2.4495 � 2.4495) � 2]

This is often stated in words as 

Area ! 12 w strip width w [ends � twice middles]

or in symbols, for n strips of width h

A ! 12 w h w [y0 � yn � 2(y1 � y2 � … � yn � 1)].

This is the 
strip width: 1.

These are the heights of the ends of 
the whole area: 0 and 2.

These are the heights 
of the intermediate

vertical lines.
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This is called the trapezium rule for width h (see figure 5.6).

●? Look at the three graphs in figure 5.7, and in each case state whether the 
trapezium rule would underestimate or overestimate the area, or whether you 
cannot tell.

EXERCISE 5C 1  The speed v in ms�1 of a train is given at time t seconds in the following table.

t 0 10 20 30 40 50 60

v 0 5.0 6.7 8.2 9.5 10.6 11.6

 The distance that the train has travelled is given by the area under the graph of 
the speed (vertical axis) against time (horizontal axis).

(i) Estimate the distance the train travels in this 1-minute period.

(ii) Give two reasons why your method cannot give a very accurate answer.

y

xED

K K

y   I�x�

y2

y1y�
yQ

yQ±1
yQ±2

K K

Figure 5.6

y

x

y

x

y

x

Figure 5.7
(i) (ii) (iii) 
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2   The definite integral µ
1

0

1
1 2� x  

dx is known to equal 
π
4.

(i) Using the trapezium rule for four strips, find an approximation for π.

(ii) Repeat your calculation with 10 and 20 strips to obtain closer estimates.

(iii) If you did not know the value of π, what value would you give it with 
confidence on the basis of your estimates in parts (i) and (ii)?

3 The table below gives the values of a function f(x) for different values of x.

x 0 0.5 1.0 1.5 2.0 2.5 3.0

f(x) 1.000 1.225 1.732 2.345 3.000 3.674 4.359

(i) Apply the trapezium rule to the values in this table to obtain an 
approximation for µ3

0 
f(x) dx.

(ii) By considering the shape of the curve y " f(x), explain whether the 
approximation calculated in part (i) is likely to be an overestimate or an 
underestimate of the true area under the curve y " f(x) between x " 0 
and x " 3.

 [MEI]

4   The graph of the function y "� 2 � x  (for x # $2) is given in the diagram.

The area of the shaded region ABCD is to be found.

(i) Make a table of values for y, for integer values of x from x " 2 to x " 7, 
giving each value of y correct to 4 decimal places.

(ii) Use the trapezium rule with five strips, each 1 unit wide, to calculate an 
estimate for the area ABCD.  
State, giving a reason, whether your estimate is too large or too small.

 Another method is to consider the area ABCD as the area of the rectangle 
ABCE minus the area of the region CDE.

(iii) Show that the area CDE is given by µ3

2
 (y2 – 4) dy.

Calculate the exact value of this integral.

(iv) Find the exact value of the area ABCD. 
Hence find the percentage error in using the trapezium rule.

 [MEI, adapted]

2 7O

1

2

3

A B

E C

D

y

x
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5 The trapezium rule is used to estimate the value of I " µ 1.6

0
  1 2� x  dx.

(i) Draw the graph of y " 1 2� x  for 0 " x " 1.6.

(ii) Use strip widths of 0.8, 0.4, 0.2 and 0.1 to find approximations to the value 
of the integral.

(iii) State the value of the integral to as many decimal places as you can justify.

6 The trapezium rule is used to estimate the value of µ 1

0
sinx xd .

(i) Draw the graph of y " sinx  for 0 " x " 1.

(ii) Use 1, 2, 4, 8 and 16 strips to find approximations to the value of the 
integral.

(iii) State the value of the integral to as many decimal places as you can justify.

7   The trapezium rule is used to estimate the value of µ 1

0

4
1 2� x  

dx .

(i) Draw the graph of y " 4
1 2� x  

for 0 " x " 1.

(ii) Use strip widths of 1, 0.5, 0.25 and 0.125 to find approximations to the 
value of the integral.

(iii) State the value of the integral to as many decimal places as you can justify.

8 A student uses the trapezium rule to estimate the value of µ 2

0
(2 � cos 2πx) dx.

(i) Find approximations to the value of the integral by applying the trapezium 
rule using strip widths of, 2, 1, 0.5 and 0.25.

(ii) Sketch the graph of y " 2 � cos 2πx for 0 " x " 2.
On copies of your graph shade the areas you have found in parts (i)(a) to (d).

(iii) Use integration to find the exact value of this integral.

9 The diagram shows the part of the curve y " lnx
x

 for 0 % x " 4. The curve cuts 
the x-axis at A and its maximum point is M.

(i) Write down the co-ordinates 
of A.

(ii) Show that the x co-ordinate 
of M is e, and write down the               
y co-ordinate of M in terms of e.

(iii) Use the trapezium rule with three 
intervals to estimate the value of

µ 4

1 

lnx
x

xd ,

 correct to 2 decimal places.

(iv) State, with a reason, whether the trapezium rule gives an underestimate or 
an overestimate of the true value of the integral in part (iii).

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q6 June 2005]

M

A

4
O

y

x
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10 The diagram shows the part of the curve y " ex cos x for 0 " x " 12U. The 
curve meets the y axis at the point A. The point M is a maximum point.

(i) Write down the co-ordinates of A.

(ii) Find the x co-ordinate of M.

(iii) Use the trapezium rule with three intervals to estimate the value of

e dx x xcos
0

1
2
π

∫ ,

 giving your answer correct to 2 decimal places.

(iv) State, with a reason, whether the trapezium rule gives an underestimate 
or an overestimate of the true value of the integral in part (iii).

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2007]

11 The diagram shows the curve y " x2 e–x  and its maximum point M.

(i) Find the x co-ordinate of M.

(ii) Show that the tangent to the curve at the point where x " 1 passes 
through the origin.

(iii) Use the trapezium rule, with two intervals, to estimate the value of

x xx2
1

3
e d−∫ ,

 giving your answer correct to 2 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q8 November 2007]
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12 The diagram shows a sketch of the curve y
x

=
+
1

1 3
 for values of x from 

�0.6 to 0.6.

(i) Use the trapezium rule, with two intervals, to estimate the value of

µ 0.6

�0.6 

1
1 3� x

xd ,

 giving your answer correct to 2 decimal places.

(ii) Explain, with reference to the diagram, why the trapezium rule may be 
expected to give a good approximation to the true value of the integral in 
this case.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 June 2005]

O 0.6–0.6

y

x

KEY POINTS

1 µkx x kx
n

cn
n

d = + +
+1

1
 

2 µe d ex xx c= +

 µe d eax b ax bx
a

c+ += +1

3 µ 1
x

xd " ln
 
a x a � c

 µ 1 1
ax b

x
a+ =d ln

 
a
 
ax � b a��� c

4 µcos( ) sin( )ax b x
a

ax b c+ = + +d 1

 µ sin( ) cos( )ax b x
a

ax b c+ = − + +d 1

 µ sec ( ) tan( )2 1ax b x
a

ax b c+ = + +d

5 You can use the trapezium rule, with n strips of width h, to find an 
approximate value for a definite integral as

A h y y y y yn n≈ + + + + +[ ]−2
20 1 2 1( ... )

 In words this is

Area ~ 12 w strip width w [ends + twice middles] 
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Numerical solution of  
equations

It is the true nature of mankind to learn from his mistakes.
Fred Hoyle

●? Which of the following equations can be solved algebraically, and which cannot? 
For each equation find a solution, accurate or approximate.

(i)  x2 � 4x � 3 " 0 (ii) x2 � 10x � 8 " 0 (iii) x5 � 5x � 3 " 0
(iv) x3 � x " 0 (v) ex " 4x

You probably realised that the equations x5 � 5x � 3 " 0 and ex " 4x cannot be 
solved algebraically. You may have decided to draw their graphs, either manually 
or using a graphic calculator or computer package, as in figure 6.1.

The graphs show you that

 ● x5 � 5x � 3 " 0 has three roots, lying in the intervals [�2, �1], [0, 1] and [1, 2].

 ● ex " 4x has two roots, lying in the intervals [0, 1] and [2, 3].

Note

An interval written as [a, b] means the interval between a and b, including a and b. 

This notation is used in this chapter. If a and b are not included, the interval is 

written (a, b). You may also elsewhere meet the notation ]a, b[, indicating that 

a and b are not included.

O

(1, –1)

(0.357, 1.43)

(2.15, 8.6)
(–1, 7)

f(x) = x5 – 5x + 3

f(x) = ex

f(x) = 4x

x

y

O x

y

Figure 6.1

6
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The problem now is how to find the roots to any required degree of accuracy, 
and as efficiently as possible.

In many real problems, equations are obtained for which solutions using 
algebraic or analytic methods are not possible, but for which you nonetheless 
want to know the answers. In this chapter you will be introduced to numerical 
methods for solving such equations. In applying these methods, keep the 
following points in mind.

 ● Only use numerical methods when algebraic ones are not available. If you can 
solve an equation algebraically (e.g. a quadratic equation), that is the right 
method to use.

 ● Before starting to use a calculator or computer program, always start by 
drawing a sketch graph of the function whose equation you are trying to solve. 
This will show you how many roots the equation has and their approximate 
positions. It will also warn you of possible difficulties with particular methods. 
When using a graphic calculator or computer package ensure that the range of 
values of x is sufficiently large to, hopefully, find all the roots.

 ● Always give a statement about the accuracy of an answer (e.g. to 5 decimal 
places, or ± 0.000 005). An answer obtained by a numerical method is 
worthless without this; the fact that at some point your calculator display 
reads, say, 1.676 470 588 2 does not mean that all these figures are valid.

 ● Your statement about the accuracy must be obtained from within the 
numerical method itself. Usually you find a sequence of estimates of ever-
increasing accuracy.

 ● Remember that the most suitable method for one equation may not be that 
for another.

Interval estimation � change-of-sign methods

Assume that you are looking for the roots of the equation f(x) " 0. This means 
that you want the values of x for which the graph of y " f(x) crosses the x axis. 
As the curve crosses the x axis, f(x) changes sign, so provided that f(x) is a 
continuous function (its graph has no asymptotes or other breaks in it), once 
you have located an interval in which f(x) changes sign, you know that that 
interval must contain a root. In both of the graphs in figure 6.2 (overleaf), there 
is a root lying between a and b.
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O xb

a

y

O xa
b

y

Figure 6.2

You have seen that x5 � 5x � 3 " 0 has roots in the intervals [�2, �1], [0, 1] and 
[1, 2]. There are several ways of homing in on such roots systematically. Two  
of these are now described, using the search for the root in the interval [0, 1] as 
an example.

Decimal search

In this method you first take increments in x of size 0.1 within the interval [0, 1], 
working out the value of f(x) " x5 � 5x � 3 for each one. You do this until you 
find a change of sign.

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

f (x) 3.00 2.50 2.00 1.50 1.01 0.53 0.08 �0.33

There is a sign change, and therefore a root, in the interval [0.6, 0.7] since the 
function is continuous. Having narrowed down the interval, you can now 
continue with increments of 0.01 within the interval [0.6, 0.7].

x 0.60 0.61 0.62

f (x) 0.08 0.03 �0.01

This shows that the root lies in the interval [0.61, 0.62].

Alternative ways of expressing this information are that the root can be taken as 
0.615 with a maximum error of ± 0.005, or the root is 0.6 (to 1 decimal place).

This process can be continued by considering x " 0.611, x " 0.612, … to obtain 
the root to any required number of decimal places.

●? How many steps of decimal search would be necessary to find each of the values 
0.012, 0.385 and 0.989, using x " 0 as a starting point?
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When you use this procedure on a computer or calculator you should be aware 
that the machine is working in base 2, and that the conversion of many simple 
numbers from base 10 to base 2 introduces small rounding errors. This can lead 
to simple roots such as 2.7 being missed and only being found as 2.699 999.

Interval bisection

This method is similar to the decimal search, but instead of dividing each interval 
into ten parts and looking for a sign change, in this case the interval is divided 
into two parts � it is bisected.

Looking as before for the root in the interval [0, 1], you start by taking the  
mid-point of the interval, 0.5.

f(0.5) " 0.53, so f(0.5) ! 0. Since f(1) " 0, the root is in [0.5, 1].

Now take the mid-point of this second interval, 0.75.

f(0.75) " �0.51, so f(0.75) " 0. Since f(0.5) ! 0, the root is in [0.5, 0.75].

The mid-point of this further reduced interval is 0.625.

f(0.625) " �0.03, so the root is in the interval [0.5, 0.625].

The method continues in this manner until any required degree of accuracy is 
obtained. However, the interval bisection method is quite slow to converge to the 
root, and is cumbersome when performed manually.

ACTIVITY 6.1 Investigate how many steps of this method you need to achieve an accuracy of           
1, 2, 3 and n decimal places, having started with an interval of length 1.

Error (or solution) bounds

Change-of-sign methods have the great advantage that they automatically 
provide bounds (the two ends of the interval) within which a root lies, so the 
maximum possible error in a result is known. Knowing that a root lies in the 
interval [0.61, 0.62] means that you can take the root as 0.615 with a maximum 
error of ± 0.005.

Problems with change-of-sign methods

There are a number of situations which can cause problems for change-of-sign 
methods if they are applied blindly, for example by entering the equation into a 
computer program without prior thought. In all cases you can avoid problems by 
first drawing a sketch graph, provided that you know what dangers to look out for.
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The curve touches the x axis

In this case there is no change of sign, so change-of-sign methods are doomed to 
failure (see figure 6.3).

There are several roots close together

Where there are several roots close together, it is easy to miss a pair of them.  
The equation

f(x) " x3 � 1.9x2 � 1.11x � 0.189 " 0 

has roots at 0.3, 0.7 and 0.9. A sketch of the 
curve of f(x) is shown in figure 6.4.

In this case f(0) " 0 and f(1) ! 0, so you 
know there is a root between 0 and 1.

A decimal search would show that f(0.3) " 0, 
so that 0.3 is a root. You would be unlikely to 
search further in this interval.

Interval bisection gives f(0.5) ! 0, so you would search the interval [0, 0.5] and 
eventually arrive at the root 0.3, unaware of the existence of those at 0.7 and 0.9.

There is a discontinuity in f(x)

The curve y " 1
2 7x � .

 has a discontinuity at x " 2.7, as shown by the asymptote in 

figure 6.5.

O x

f(x)

Figure 6.3

O 0.3 0.7 0.9 x

f(x)

Figure 6.4

2.7

O
x

y

Figure 6.5
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The equation 1
2 7x � .  

" 0 has no root, but all change-of-sign methods will  

converge on a false root at x " 2.7.

None of these problems will arise if you start by drawing a sketch graph.

Note: Use of technology

It is important that you understand how each method works and are able, if 

necessary, to perform the calculations using only a scientific calculator. However, 

these repeated operations lend themselves to the use of a spreadsheet or a 

programmable calculator. Many packages, such as Autograph, will both perform the 

methods and illustrate them graphically.

EXERCISE 6A 1 (i) Show that the equation x3 � 3x � 5 " 0 has no turning (stationary) points.

(ii) Show with the aid of a sketch that the equation can have only one root, 
and that this root must be positive.

(iii) Find the root, correct to 3 decimal places.

2 (i) How many roots has the equation ex � 3x " 0?
(ii) Find an interval of unit length containing each of the roots.

(iii) Find each root correct to 2 decimal places.

3 (i) Sketch y " 2x and y " x � 2 on the same axes.
(ii) Use your sketch to deduce the number of roots of the equation 2x " x � 2.

(iii) Find each root, correct to 3 decimal places if appropriate.

4 Find all the roots of x3 � 3x � 1 " 0, giving your answers correct to 2 decimal 
places.

5 Find the roots of x5 � 5x  � 3 " 0 in the intervals [�2, �1] and [1, 2], correct to 
2 decimal places, using

(i) decimal search   

(ii) interval bisection.

Comment on the ease and efficiency with which the roots are approached by 
each method.

6 (i) Use a systematic search for a change of sign, starting with x " �2, to locate 
intervals of unit length containing each of the three roots of

x3 � 4x2 � 3x � 8 " 0.

(ii) Sketch the graph of f(x) " x3 � 4x2 � 3x  � 8.

(iii) Use the method of interval bisection to obtain each of the roots correct to 
2 decimal places.

(iv) Use your last intervals in part (iii) to give each of the roots in the form       
a ± (0.5)n where a and n are to be determined.
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7 The diagram shows a sketch of the graph of f(x) " ex � x3 without scales.

(i) Use a systematic search for a change of sign to locate intervals of unit 
length containing each of the roots.

(ii) Use a change-of-sign method to find each of the roots correct to 3 decimal 
places.

8 For each of the equations below

(a) sketch the curve

(b) write down any roots

(c) investigate what happens when you use a change-of-sign method with a 
starting interval of [�0.3, 0.7].

(i) y " 1
x

 (ii) y " x
x2 1�

 (iii) y " x
x

2

2 1�

Fixed-point iteration 

In fixed-point iteration you find a single value or point as your estimate for the 
value of x, rather than establishing an interval within which it must lie. This 
involves an iterative process, a method of generating a sequence of numbers by 
continued repetition of the same procedure. If the numbers obtained in this 
manner approach some limiting value, then they are said to converge to this value.

INVESTIGATION

Notice what happens in each of the following cases, and try to find some 
explanation for it.

(i) Set your calculator to the radian mode, enter zero if not automatically 
displayed and press the cosine key repeatedly.

(ii) Enter any positive number into your calculator and press the square root key 
repeatedly. Try this for both large and small numbers.

O x

f(x) f(x) = ex – x3
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(iii) Enter any positive number into your calculator and press the sequence �

 1  "  �  "  repeatedly. Write down the number which appears each time 

 you press " . The sequence generated appears to converge. You may recognise  
 the number to which it appears to converge: it is called the Golden Ratio.

Rearranging the equation f(x) " 0 into the form x " F(x)

The first step, with an equation f(x) " 0, is to rearrange it into the form x " F(x). 
Any value of x for which x " F(x) is a root of the original equation, as shown in 
figure 6.6.

When f(x) " x2 � x � 2, f(x) " 0 is the same as x " x2 � 2.

The equation x5 � 5x � 3 " 0 which you met earlier can be rewritten in a number of 

ways. One of these is 5x " x5 � 3, giving

x " F(x) " x
5 3
5
� .

O–1 2

O

–1

2

x

y y = f(x) = x2 – x – 2

y = F(x) = x2 – 2

x

y y = x

Figure 6.6
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Figure 6.7 shows the graphs of y " x and y " F(x) in this case.

This provides the basis for the iterative formula

xn � 1 " xn
5 3
5
� .

Taking x " 1 as a starting point to find the root in the interval [0, 1], successive 
approximations are:

x1 " 1,    x2 " 0.8,    x 3 " 0.6655,    x 4" 0.6261,    x 5 " 0.6192,
x 6 " 0.6182,    x 7 " 0.6181,    x 8 " 0.6180,    x 9 " 0.6180.

In this case the iteration has converged quite rapidly to the root for which you 
were looking.

●? Another way of arranging x5 � 5x  � 3 " 0 is x  " 5 35 x � . What other possible 
rearrangements can you find? How many are there altogether?

The iteration process is easiest to understand if you consider the graph. Rewriting 
the equation f(x) " 0 in the form x " F(x) means that instead of looking for 
points where the graph of y " f(x) crosses the x axis, you are now finding the 
points of intersection of the curve y " F(x) and the line y " x.

What you do What it looks like on the graph
 ● Choose a value, x1, of x Take a starting point on the x axis

 ● Find the corresponding value of F(x1) Move vertically to the curve y " F(x)

 ● Take this value F(x1) as the new   Move horizontally to the line y " x

value of x , i.e. x2 " F(x1)

 ● Find the value of F(x2) and so on Move vertically to the curve

O 21–1–2 x

y y = x

x5 + 3
5y =

Figure 6.7
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O

1

x4

1
x

y
y = x

y = F(x)

x3 x2 x1

Figure 6.8

The effect of several repeats of this procedure is shown in figure 6.8. The 
successive steps look like a staircase approaching the root: this type of diagram is 
called a staircase diagram. In other examples, a cobweb diagram may be produced, 
as shown in figure 6.9.

Successive approximations to the root are found by using the formula

xn�1 " F(xn).

This is an example of an iterative formula. If the resulting values of xn approach 
some limit, a, then a " F(a), and so a is a fixed point of the iteration. It is also a 
root of the original equation f(x) " 0.

O x1
x

y
y = x

y = F(x)

x3 x5 x4 x2

Figure 6.9
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Note

In the staircase diagram, the values of xn approach the root from one side, but in a 

cobweb diagram they oscillate about the root. From figures 6.8 and 6.9 it is clear that 

the error (the difference between a and xn) is decreasing in both diagrams.

Accuracy of the method of rearranging the equation

Iterative procedures give you a sequence of point estimates. A staircase diagram, 
for example, might give the following.

1, 0.8, 0.6655, 0.6261, 0.6192

What can you say at this stage?

Looking at the pattern of convergence it seems as though the root lies between 
0.61 and 0.62, but you cannot be absolutely certain from the available evidence. 

 To be certain you must look for a change of sign.

f(0.61) " �0.034…    f(0.62) " �0.0083… 

 ●  Explain why you can now be quite certain that your judgement is correct. 

Note

Estimates from a cobweb diagram oscillate above and below the root and so 

naturally provide you with bounds.

Using different arrangements of the equation

So far only one possible arrangement of the equation x5 � 5x � 3 " 0 has been 
used. What happens when you use a different arrangement, for example 

x " 5 35 x � , which leads to the iterative formula

xn�1 "  5 35 xn � ?

The resulting sequence of approximations is:

x1 " 1, x2 " 1.1486..., x3 " 1.2236..., x4 " 1.2554...,  
x5 " 1.2679..., x6 " 1.2727..., x7 " 1.2745...,  x8 " 1.2752...,  
x9 " 1.2755..., x10 " 1.2756..., x11 " 1.2756..., x12 " 1.2756....

!  In the calculations the full calculator values of xn were used, but only the first
4 decimal places have been written down.



Fixed
-p

o
in

t iteratio
n

147

P2 

6

The process has clearly converged, but in this case not to the root for which you 
were looking: you have identified the root in the interval [1, 2]. If instead you  
had taken x1 " 0 as your starting point and applied the second formula, you 
would have obtained a sequence converging to the value �1.6180, the root in 
the interval [�2, �1].

The choice of F(x)

A particular rearrangement of the equation f(x) " 0 into the form x " F(x) will 
allow convergence to a root a of the equation, provided that �1 " F'(a) " 1 for 
values of x close to the root.

Look again at the two rearrangements of x5 � 5x � 3 " 0 which were suggested. 
When you look at the graph of y " F(x) " 5 35 x � , as shown in figure 6.10, you 
can see that its gradient near A, the root you were seeking, is greater than 1. 

This makes xn�1 " 5 35 xn �  an unsuitable iterative formula for finding the root

in the interval [0, 1], as you saw earlier.

When an equation has two or more roots, a single rearrangement will not usually 
find all of them. This is demonstrated in figure 6.11.

A

21–1–2 x

y y = x

y =   5x – 35

Figure 6.10

O x

y = xy = F(x)

ba

y

Figure 6.11

The gradient of y " F(x) is less than 1 
(i.e. the gradient of the line y " x) and 
so the iteration xn�1 " F(xn) converges 

to the root x " a.

The gradient of y " F(x) is greater 
than 1 (i.e. the gradient of the line y " x) 
and so the iteration xn�1 " F(xn) does not 

converge to the root x " b.
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ACTIVITY 6.2 Try using the iterative formula xn�1 " 
xn

5 3
5
�

 to find the roots in the intervals

 [�2, �1] and [1, 2]. In both cases use each end point of the interval as a starting 
point. What happens? 

Explain what you find by referring to a sketch of the curve y " x
5 3
5
� .

EXERCISE 6B 1 (i) Show that the equation x3 � x � 2 " 0 has a root between 1 and 2.

(ii) The equation is rearranged into the form x " F(x), where 

F(x) " x � 23 .

 Use the iterative formula suggested by this rearrangement to find the value 
of the root to 3 decimal places.

2 (i) Show that the equation e�x � x � 2 " 0 has a root in the interval [2, 3].
(ii) The equation is rearranged into the form " e�x � 2.

 Use the iterative formula suggested by this rearrangement to find the value 
of the root to 3 decimal places.

3 (i) Show that the equation ex � x � 6 " 0 has a root in the interval [1, 2].
(ii) Show that this equation may be written in the form x " ln(6 � x).

(iii) Use an iterative formula based on the equation x " ln(6 � x) to calculate 
the root correct to 3 decimal places.

4 (i) Sketch the curves y " ex and y " x2 � 2 on the same graph.
(ii) Use your sketch to explain why the equation ex � x2 � 2 " 0 has only one 

root.

(iii) Rearrange this equation in the form x " F(x).

(iv) Use an iterative formula based on the equation found in part (iii) to 
calculate the root correct to 3 decimal places

5 (i) Show that x2 " ln(x � 1) for x " 0 and for one other value of x.
(ii) Use the method of fixed point iteration to find the second value to 

3 decimal places.

6 (i) Sketch the graphs of y " x and y " cos x on the same axes, for 0 # x # U
2

.

(ii) Find the solution of the equation x " cos x to 5 decimal places.

7 The sequence of values given by the iterative formula

xn�1 " 
3
4

2
3

x
x

n

n
� ,

with initial value x1 " 2, converges to α.

(i) Use this iteration to calculate α correct to 2 decimal places, showing the 
result of each iteration to 4 decimal places.

(ii) State an equation which is satisfied by α and hence find the exact value of α.
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q3 June 2005]
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8 The sequence of values given by the iterative formula

xn�1 " 
2
3

4
2

x
x

n

n

� ,

 with initial value x1 " 2, converges to α.

(i) Use this iterative formula to determine α correct to 2 decimal places, 
giving the result of each iteration to 4 decimal places.

(ii) State an equation that is satisfied by α and hence find the exact value of α.
 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q2 November 2007]

9 (i) By sketching a suitable pair of graphs, show that the equation

cos x " 2 � 2x,

where x is in radians, has only one root for 0 # x # 12U.

(ii) Verify by calculation that this root lies between 0.5 and 1.

(iii) Show that, if a sequence of values given by the iterative formula

xn�1 " 1 � 12 cos xn

   converges, then it converges to the root of the equation in part (i).

(iv) Use this iterative formula, with initial value x1 " 0.6, to determine this 
root correct to 2 decimal places. Give the result of each iteration to  
4 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 November 2008]

10 The diagram shows the curve y " x 2 cos x, for 0 # x # 12U, and its maximum 
point M.

(i) Show by differentiation that the x co-ordinate of M satisfies the equation

 tan x " 2
x

.

(ii) Verify by calculation that this equation has a root (in radians) between  
1 and 1.2.

(iii) Use the iterative formula xn�1 " tan�1 
2
xn

⎛
⎝⎜

⎞
⎠⎟  to determine this root correct

 to 2 decimal places. Give the result of each iteration to 4 decimal places.
 [Cambridge International AS & A Level Mathematics 9709, Paper 22 Q7 November 2009]

M

UO 1
2

y

x
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11 The diagram shows the curve y " xe2x and its minimum point M.

(i) Find the exact co-ordinates of M.

(ii) Show that the curve intersects the line y " 20 at the point whose   
x co-ordinate is the root of the equation

x " 1
2

20ln
x( ).

(iii) Use the iterative formula

xn�1 " 1
2

20ln xn

⎛
⎝

⎞
⎠ ,

with initial value x1 " 1.3, to calculate the root correct to 2 decimal 
places, giving the result of each iteration to 4 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 2 Q7 June 2009]

12 (i) By sketching a suitable pair of graphs, show that the equation

ln x " 2 � x 2

has only one root.

(ii) Verify by calculation that this root lies between x " 1.3 and x " 1.4.

(iii) Show that, if a sequence of values given by the iterative formula

xn�1 " �(2 � ln xn)

converges, then it converges to the root of the equation in part (i).

(iv) Use the iterative formula xn�1 " �(2 � ln xn) to determine the root correct 
to 2 decimal places. Give the result of each iteration to 4 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 22 Q6 June 2010]
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13 The equation x3 � 8x � 13 " 0 has one real root.

(i) Find the two consecutive integers between which this root lies.

(ii) Use the iterative formula

xn�1 " (8xn � 13)
1
3

to determine this root correct to 2 decimal places. Give the result of each 
iteration to 4 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q2 November 2009]

14 The equation x3 � 2x � 2 " 0 has one real root.

(i) Show by calculation that this root lies between x " 1 and x " 2.

(ii) Prove that, if a sequence of values given by the iterative formula

xn�1 " 
2 2
3 2

3

2

x
x

n

n

�
–

converges, then it converges to this root.

(iii) Use this iterative formula to calculate the root correct to 2 decimal 
places. Give the result of each iteration to 4 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2009]

KEY POINTS

1 When f(x) is a continuous function, if f(a) and f(b) have opposite signs, there 
will be at least one root of f(x) " 0 in the interval [a, b].

2 When an interval [a, b] containing a root has been found, this interval may 
be reduced systematically by decimal search or interval bisection.

3 Fixed-point iteration may be used to solve an equation f(x) " 0. You can 
sometimes find a root by rearranging the equation f(x) " 0 into the form
x " F(x) and using the iteration xn�1 " F(xn).

4 Successive iterations will converge to the root a provided that �1 < F'(a) < 1 
for values of x close to the root.
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Further algebra

At the age of twenty-one he wrote a treatise upon the Binomial 
Theorem. ... On the strength of it, he won the Mathematical Chair at 
one of our smaller Universities.

Sherlock Holmes on Professor Moriarty in
‘The Final Problem’ by Sir Arthur Conan Doyle

How would you find 101  correct to 
3 decimal places, without using a calculator?

Many people are able to develop a very 
high degree of skill in mental arithmetic, 
particularly those whose work calls for quick 
reckoning. There are also those who have quite 
exceptional innate skills. Shakuntala Devi, 
pictured right, is famous for her mathematical 
speed. On one occasion she found the 23rd 
root of a 201-digit number in her head, 
beating a computer by 12 seconds. On another 
occasion she multiplied 7 686 369 774 870 by 
2 465 099 745 779 in just 28 seconds. 

While most mathematicians do not have 
Shakuntala Devi’s high level of talent with 
numbers, they do acquire a sense of when something looks right or wrong. This 
often involves finding approximate values of numbers, such as 101 , using 
methods that are based on series expansions, and these are the subject of the first 
part of this chapter.

INVESTIGATION

Using your calculator, write down the values of 1 02. , 1 04. , 1 06. , …, giving 
your answers correct to 2 decimal places. What do you notice?

Use your results to complete the following, giving the value of the constant k.

1 02 1 0 02
1
2. ( . )= +  ~ 1 + 0.02k

1 04 1 0 04
1
2. ( . )= +  ~ 1 + 0.04k

What is the largest value of x such that 1 � x  ~ 1 + kx is true for the same    
value of k?

7
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The general binomial expansion

In Pure Mathematics 1 Chapter 3 you met the binomial expansion in the form 

( )1 1 1 2 3
2 3+ = + ⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟ +…+ ⎛

⎝x
n

x
n

x
n

x
n
r

n ⎜⎜
⎞
⎠⎟ +…xr

which holds when n is any positive integer (or zero), that is n ! !.

This may also be written as

( ) ( )
! !

1 1 1
2

1 2
3

2 3+ = + + − + −( ) −( ) +…x nx n n x
n n n

xn

+ − − … − + +…n n n n r
r

xr( )( ) ( )
!

1 2 1

which, being the same expansion as above, also holds when n ! !.

The general binomial theorem states that this second form, that is

( ) ( )
!

( )( )
!

1 1 1
2

1 2
3

2 3+ = + + − + − − +…x nx n n x n n n xn

+ − − … − + +…n n n n r
r

xr( ( ) ( )
!

1 2 1

is true when n is any real number, but there are two important differences to 
note when n " !.

 ● The series is infinite (or non-terminating).

 ● The expansion of (1 + x)n is valid only if a x  a ! 1.

Proving this result is beyond the scope of an A-level course but you can assume 
that it is true.

Consider now the coefficients in the binomial expansion:

1 1
2

1 2
3

1 2 3
4

, , ( )
!

, ( ( )
!

, ( )( )( )
!

,n n n n n n n n n n− − − − − − …

When n " 0, we get 1    0    0    0    0    …    (infinitely many zeros)

 n " 1 1    1    0    0    0    … ditto

 n " 2 1    2    1    0    0    … ditto

 n " 3 1    3    3    1    0    … ditto

 n " 4 1    4    6    4    1    … ditto

so that, for example

(1 + x)2 " 1 + 2x + x2 + 0x3 + 0x4 + 0x5 + …

(1 + x)3 " 1 + 3x + 3x2 + x3 + 0x4 + 0x5 + …

(1 + x)4 " 1 + 4x + 6x2 + 4x3 + x4 + 0x5 + …

This is a short way of 
writing ‘n is a natural 

number’. A natural is any 
positive integer or zero.

This is a short way 
of writing ‘n is not a 

natural number’.
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Of course, it is usual to discard all the zeros and write these binomial coefficients 
in the familiar form of Pascal’s triangle:

    1
   1  1
  1  2  1
 1  3  3  1
1  4  6  4  1

and the expansions as

(1 + x)2 " 1 + 2x + x2

(1 + x)3 " 1 + 3x + 3x2 + x3

(1 + x)4 " 1 + 4x + 6x2 + 4x3 + x4

However, for other values of n (where n " !) there are no zeros in the row of 
binomial coefficients and so we obtain an infinite sequence of non-zero terms. 
For example:

n = − − − − − − − − −3 3 3 4
2

3 4 5
3

3 4 5gives 1 – ( )( )
!

( )( )( )
!

( )( )( ))( )
!

− …

− − …

= ( ) −(

6
4

1 3 6 10 15

1
2

1
2

1
2

1
2

that is

gives 1n
)) −( ) −( ) ( ) −( ) −( ) −( ) …

( )
2 3 4

1
2

1
2

3
2

1
2

1
2

3
2

5
2

! ! !

that iis

so that

1

1 1 3 6 10

1
2

1
8

1
16

5
128

3 2 3

− − …

+ = − + −−( )x x x x ++ +…

+ = + − + − +…

15

1 1

4

2 3 41
2 1

2
1
8

1
16

5
128

x

x x x x xand ( )

!  But remember: these two expansions are valid only if a x a ! l.

 ●  Show that the expansion of ( )1
1
2� x  is not valid when x " 8.

These examples confirm that there will be an infinite sequence of non-zero 
coefficients when n " !.

In the investigation at the beginning of this chapter you showed that

1 1 1
2

+ ≈ +x x  

is a good approximation for small values of x. Notice that these are the first two 
terms of the binomial expansion for n " 1

2
. If you include the third term, the 

approximation is

1 1 1
2

1
8

2+ ≈ + −x x x .
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Take y x y x x y x= + = + − = +1 1 11
2

1
2

1
8

2, and .

They are shown in the graph in figure 7.1 for values of x between –1 and 1.

INVESTIGATION

For n " 1
2
 the first three terms of the binomial expansion are 1 1

2
1
8

2+ −x x .
Use your calculator to verify the approximate result

1 1 1
2

1
8

2+ ≈ + −x x x

for ‘small’ values of x. 

What values of x can be considered as ‘small’ if you want the result to be correct 
to 2 decimal places?

Now take n " –3. Using the coefficients found earlier suggests the approximate result

(1 + x)–3 ~ 1 – 3x + 6x2.

Comment on values of x for which this approximation is correct to 
2 decimal places.

When a x a ! 1, the magnitudes of  x2, x3, x4, x5, … form a decreasing geometric 
sequence. In this case, the binomial expansion converges (just as a geometric 
progression converges for –1 ! r ! 1, where r is the common ratio) and has a 
sum to infinity.

ACTIVITY 7.1 Compare the geometric progression 1 – x + x2 – x3 + … with the series obtained 
by putting n " –1 in the binomial expansion. What do you notice?

To summarise: when n is not a positive integer or zero, the binomial expansion 
of (1 + x)n becomes an infinite series, and is only valid when some restriction is 
placed on the values of x.

0 1.00.5–0.5

0.5

1.0

1.5

–1.0 x

y

y = 1 +    x –    x21
2

y =   1 + x  

1
8

y = 1 +    x1
2

Figure 7.1
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The binomial theorem states that for any value of n:

( ) ( )
!

( )( )
!

1 1 1
2

1 2
3

2 3+ = + + − + − − +…x nx n n x n n n xn

where

 ● if n ! !, x may take any value;

 ● if n " !, a���x   a ! 1.

Note

The full statement is the binomial theorem, and the right-hand side is referred to as 

the binomial expansion.

EXAMPLE 7.1 Expand (1 – x)–2 as a series of ascending powers of x up to and including the term 
in x3, stating the set of values of x for which the expansion is valid.

SOLUTION

( ) ( )
!

( )( )
!

1 1 1
2

1 2
3

2 3+ = + + − + − − +…x nx n n x n n n xn

Replacing n by –2, and x by (–x) gives

1 1 2 2 3
2

2 32 2+ −( ) = + − − + − − − + − −−
( ) ( )( ) ( )( )

!
( ) ( )( )(x x x −− − +…

<

4
3

1

3)
!

( )

–

x

xwhen | |

which leads to

(1 – x)–2 ≈ + + + <1 2 3 4 12 3x x x xwhen | | .

Note

In this example the coefficients of the powers of x form a recognisable sequence, 

and it would be possible to write down a general term in the expansion. The 

coefficient is always one more than the power, so the r th term would be rxr – 1.  

Using sigma notation, the infinite series could be written as

rxr

r

−

=

∞

∑ 1

1

It is important to put brackets round the 
term –x, since, for example, (–x)2 is not 

the same as –x2.
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EXAMPLE 7.2 Find a quadratic approximation for 
1

1 2� t
 and state for which values of t the 

expansion is valid.

SOLUTION

1
1 2

1
1 2

1 21
2

1
2

+
=

+
= + −

t t
t

( )
( )

The binomial theorem states that

(a � x)n

 
= + + + − − +…1 1

2
1 2
3

2 3nx n n x n n n x( – )
!

( )( )
!

Replacing n by – 1
2
 and x by 2t gives

¡��������������

( ) ( )
!

( )1 2 1 2
2

2 2
1
2 1

2

1
2

3
2 2+ = + −( ) +

−( ) −( ) +…−t t t when | tt

t t t t

|

| |

<

+ ≈ − + <−

1

1 2 1
1
2 3

2
1
2

2( ) when

INVESTIGATION

Example 7.1 showed how using the binomial expansion for (1 – x)–2 gave a 
sequence of coefficients of powers of x which was easily recognisable, so that the 
particular binomial expansion could be written using sigma notation.

Investigate whether a recognisable pattern is formed by the coefficients in the 
expansions of (1 – x)n for any other negative integers n.

The equivalent binomial expansion of (a + x)n when n is not a positive integer is 
rather unwieldy. It is easier to start by taking a outside the brackets:

(a � x)n

 
= +( )a x

a
n

n

1

The first entry inside the bracket is now 1 and so the first few terms of the 
expansion are

         (a � x)n

 

= + ( ) + − ( ) + − − ( ) +…⎡
⎣

a n x
a

n n x
a

n n n x
a

n 1 1
2

1 2
3

2 3( )
!

( )( )
!⎢⎢

⎤
⎦
⎥

<for x
a

1.

Note

Since the bracket is raised to the power n, any quantity you take out must be raised 

to the power n too, as in the following example.

Remember to put 
brackets round the 

term 2t, since (2t)2 is 
not the same as 2t2.
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EXAMPLE 7.3 Expand (2 + x)–3 as a series of ascending powers of x up to and including the 
term in x2, stating the values of x for which the expansion is valid.

SOLUTION

( )
( )

–2 1
2

3
3+ =

+
x

x

=
+( )
1

2 1
2

3
3

x

= +( )1
8

1
2

3
x

–

Take the binomial expansion

( ) ( )
!

( )( )
!

1 1 1
2

1 2
3

2 3+ = + + − + − − +…x nx n n x n n n xn

and replace n by –3 and x by 
x
2 to give

1
8

1
2

1
8

1 3
2

3 4
2 2

3 2

+( ) = + − ( ) + − − ( ) +…
⎡
⎣
⎢

⎤
⎦
⎥

x x x
–

( ) ( )( )
!

wwhen x
2

1<

≈ − + <1
8

3
16

3
16

2
2x x xwhen | |

●? The chapter began by asking how you would find 101 to 3 decimal places 
without using a calculator. How would you find it?

EXAMPLE 7.4 Find a quadratic approximation for 
( )
( – )

2
1 2

� x
x

, stating the values of x for which the

expansion is valid. 

SOLUTION

( )
( – )

( )( )
2
1

2 12
2 1+ = + − −x

x
x x

Take the binomial expansion

( ) ( )
!

( )( )
!

1 1 1
2

1 2
3

2 3+ = + + − + − − +…x nx n n x n n n xn

and replace n by –1 and x by (–x2) to give

1 1 1 1 2
2

2 1 2
2 2

+ −( ) = + − − + − − − +…−
( ) ( )( ) ( )( )( )

!
x x x when | −− |x2 1<

 (1 – x2)–1 " 1 � x2 � …      when a���x2
   a ! 1, i.e. when a���x   a ! 1.

Notice that this is the

same as 2–3 1
2

3

+( )x
–

.
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Multiply both sides by (2 + x) to obtain (2 + x)(1 – x2)–1:

(2 + x)(1 – x2)–1 ~ (2 + x)(1 + x2)
 ~ 2 + x + 2x2      when a���x   a ! 1.

Sometimes two or more binomial expansions may be used together. If these 
impose different restrictions on the values of x , you need to decide which is the 
strictest.

EXAMPLE 7.5 Find a and b such that

1
1 2 1 3( )( )− +x x  

~ a + bx

and state the values of x for which the expansions you use are valid.

SOLUTION

1
1 2 1 3( )( )− +x x  " (1 – 2x)–1(1 + 3x)–1

Using the binomial expansion:

 (1 – 2x)–1 ~ 1 + (–1)(–2x) for a   –2x   a ! 1

and (1 + 3x)–1 ~ 1 + (–1)(3x) for a� 3x  a ! 1

¡ (1 – 2x)–1(1 + 3x)–1 ~ (1 + 2x)(1 – 3x)

   ~ 1 – x      (ignoring higher powers of x)

giving a " 1 and b " –1.

For the result to be valid, both a  2x   a ! 1 and a  3x   a ! 1 need to be satisfied.

 a  2x   a ! 1    ¡    – 1
2
 ! x ! 1

2

and a  3x   a ! 1    ¡    – 1
3
 ! x ! 1

3

Both of these restrictions are satisfied if  – 1
3
 ! x ! 1

3
. This is the stricter 

restriction.

Note

The binomial expansion may also be used when the first term is the variable.  

For example:  

(x + 2)–1  may be written as  (2 + x)–1  " 2–1 1
2

1
+( )−x  

and (2x – 1)–3 " [(–1)(1 – 2x)]–3

  " (–1)–3(1 – 2x)–3

  " –(1 – 2x)–3

The term in x3 has been omitted 
because the question asked for a 

quadratic approximation.
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●? What happens when you try to rearrange x � 1 so that the binomial expansion 

can be used?

EXERCISE 7A 1 For each of the expressions below

(a) write down the first three non-zero terms in their expansions as a series of 
ascending powers of x

(b) state the values of x for which the expansion is valid

(c) substitute x " 0.1 in both the expression and its expansion and calculate 
the percentage error, where

percentage error = absolute error
true value

w 100%%

(i) (1 + x)–2 (ii) 1
1 2� x

 (iii) 1 2� x

(iv) 
1 2
1 2
+
−

x
x

 (v) (3 + x)–1 (vi) ( )1 4− +x x

(vii) x
x
+
−

2
3

 (viii) 1

3 4x �
 (ix) 1 2

2 1 2
+
−

x
x( )

(x) 1
1

2

2
+
−

x
x

 (xi) 1 2 23 � x  (xii) 1
1 2 1( )( )� �x x

2 (i) Write down the expansion of (1 + x)3.
(ii) Find the first four terms in the expansion of (1 – x)–4 in ascending powers 

of x. For what values of x is this expansion valid?

(iii) When the expansion is valid

( )
( )
1
1

3

4
+
−

x
x

 " 1 + 7x + ax2 + bx3 + … .

 Find the values of a and b.
 [MEI]

3 (i) Write down the expansion of (2 – x)4.
(ii) Find the first four terms in the expansion of (1 + 2x)–3 in ascending 

powers of x. For what range of values of x is this expansion valid?
(iii) When the expansion is valid

( )
( )

2
1 2

4

3
−
+

x
x

 " 16 + ax + bx2 + … .

 Find the values of a and b.
 [MEI]

4  Write down the expansions of the following expressions in ascending powers 
of x , as far as the term containing x3. In each case state the values of x for 
which the expansion is valid.

(i) (1 – x)–1 (ii) (1 + 2x)–2 (iii) 1
1 1 2 2( )( )− +x x

 [MEI]
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5 (i) Show that 

1

4

1
2

1
4

1
2

−
= −( )−

x

x
.

(ii) Write down the first three terms in the binomial expansion of  1
4

1
2−( )−x

 
in ascending powers of x, stating the range of values of x for which this 
expansion is valid.

(iii) Find the first three terms in the expansion of 2 1
4

( )+
−

x
x

 in ascending 

 powers of x , for small values of x .
 [MEI]

6 (i) Expand (1 + y)–1, where –1 ! y ! 1, as a series in powers of y, giving the 
first four terms.

(ii) Hence find the first four terms of the expansion of   1 2
1

+( )−x
 where –1 ! 2

x
 ! 1.

(iii) Show that  1 2
2 2

1
2

1 1

+( ) = + = +( )− −

x
x

x
x x .

(iv) Find the first four terms of the expansion of  x x
2

1
2

1

+( )−  where –1 ! x
2

 ! 1.

(v) State the conditions on x under which your expansions for  1 2
1

+( )−x  and

 
x x
2

1
2

1

+( )−   are valid and explain briefly why your expansions are different.
  [MEI]

7 Expand (2 + 3x)–2 in ascending powers of x, up to and including the term in 
x2, simplifying the coefficients.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q1 June 2007]

8 Expand (1 + x) �(1 – 2x) in ascending powers of x, up to and including the 
term in x2, simplifying the coefficients.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q2 November 2008]

9 When (1 + 2x)(1 + ax)
2
3, where a is a constant, is expanded in ascending 

powers of x, the coefficient of the term in x is zero.

(i) Find the value of a.

(ii) When a has this value, find the term in x3 in the expansion of   
(1 + 2x)(1 + ax)

2
3, simplifying the coefficient.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 June 2009]
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Review of algebraic fractions 

If f(x) and g(x) are polynomials, the expression f (
g( )

x
x

)  is an algebraic fraction

or rational function. It may also be called a rational expression. There are many 
occasions in mathematics when a problem reduces to the manipulation of 
algebraic fractions, and the rules for this are exactly the same as those for 
numerical fractions.

Simplifying fractions 

To simplify a fraction, you look for a factor common to both the numerator    
(top line) and the denominator (bottom line) and cancel by it. 

For example, in arithmetic

15
20

5 3
5 4

3
4

= ×
× =

and in algebra

6
9

2 3
3 3

2
32

a
a

a
a a a

= × ×
× × × =

Notice how you must factorise both the numerator and denominator before 
cancelling, since it is only possible to cancel by a common factor. In some cases 
this involves putting brackets in.

2 4
4

2 2
2 2

2
22

a
a

a
a a a

+
−

= +
+ = −

( )
( )( – ) ( )

Multiplying and dividing fractions

Multiplying fractions involves cancelling any factors common to the numerator 
and denominator. For example:

10
3

9
25

2 5
3

3 3
5 5

6
52

2a
b

ab a
b b

a b a
b

× = × ×
× × × × × ×

× =

As with simplifying, it is often necessary to factorise any algebraic expressions 
first.

a a
a

a a
a

2 3 2
9

12
1

1 2
3 3

3 4
1

+ + × + = + +
× × ×

+
( )( )

( )

= + ×( )a 2
3

4
1

= +4 2
3

( )a

Remember that when one fraction is divided by another, you change ÷ to w and 
invert the fraction which follows the ÷ symbol. For example:

12
1

4
1

12
1 1

1
42x x x x

x
−

÷ + = + − × +
( )( )

( )

= −
3

1( )x
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Addition and subtraction of fractions 

To add or subtract two fractions they must be replaced by equivalent fractions, 
both of which have the same denominator. 

For example:

2
3

1
4

8
12

3
12

11
12

+ = + =

Similarly, in algebra:

2
3 4

8
12

3
12

11
12

x x x x x+ = + =

and 
2

3
1

4
8

12
3

12
11

12x x x x x
+ = + =

You must take particular care when the subtraction of fractions introduces a sign 
change. For example:

4 3
6

2 1
4

2 4 3 3 2 1
12

x x x x− − + = − − +( ) ( )

= − − −8 6 6 3
12

x x

= −2 9
12

x

Notice how in addition and subtraction, the new denominator is the lowest 
common multiple of the original denominators. When two denominators have no 
common factor, their product gives the new denominator. For example:

2
3

3
2

2 2 3 3
3 2y y

y y
y y+ + − = − + +
+ −

( ) ( )
( )( )

= − + +
+ −

2 4 3 9
3 2

y y
y y( )( )

= +
+ −
5 5
3 2
y

y y( )( )

= +
+ −
5 1

3 2
( )

( )( )
y

y y

It may be necessary to factorise denominators in order to identify common 
factors, as shown here.

2 3 2 3
2 2

b
a b a b

b
a b a b a b−

− + = + − − +( )( ) ( )

= − −
+ −

2 3b a b
a b a b

( )
( )( )

= −
+ −
5 3b a

a b a b( )( )

Notice how you only need 
12x here, not 12x2.

(a + b) is a 
common factor.
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EXERCISE 7B Simplify the expressions in questions 1 to 10.

1 6
9 2

a
b

a
b

w    2 
5

3
15 2xy

xy{

3 
x

x x

2

2
9

9 18
−

− +
   4 5 1

3
6 9

5 4 1

2

2
x

x
x x
x x

−
+

× + +
+ −

5 4 25
4 20 25

2

2
x

x x
−

+ +
   6 a a

a

2 12
5

3
4 12

+ − × −

7 
4 9

2 1
2 32

2 2
x

x x
x

x x
−

+ +
÷ −

+
   8 

2 4
5

42p p+ ÷ −( )

9 a b
a ab b

2 2

2 22
−

+ −
 10 x x

x x
x x

x x

2

2

2

2
8 16
6 9

2 3
4

+ +
+ +

× + −
+

In questions 11 to 24 write each of the expressions as a single fraction in its 
simplest form.

11  1
4

1
5x x

�  12 x x
3

1
4

− +( )

13  a
a a+ + −1

1
1

 14 2
3

3
2x x− + −

15  x
x x2 4

1
2−

− +  16 
p

p
p

p

2

2

2

21 1−
−

+

17  2
1 12a

a
a+ −

+  18 2
2

4
42

y
y y( )+

− +

19  x
x

� �
1

1
 20 2

2 1
3

12b b b+ +
− +

21  2
3 1

3
2 1( ) ( )x x− + +  22 6

5 2
2

2 2( ) ( )x
x

x�
�

�

23  2
2

2
2 62a

a
a a+ − −

+ −  24 1
2

1 1
2x x x− + + +

Partial fractions

Sometimes, it is easier to deal with two or three simple separate fractions than it 
is to handle one more complicated one.

For example:

1
1 2 1( )( )� �x x

may be written as

2
1 2

1
1( )

–
( )� �x x

.
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 ● When 1
1 2 1( )( )� �x x

 is written as 2
1 2

1
1( )

–
( )� �x x

 you can then do binomial 

expansions on the two fractions, and so find an expansion for the original 
fraction.

 ● When integrating, it is easier to work with a number of simple fractions than a 
combined one. For example, the only analytic method for integrating

1
1 2 1( )( )� �x x

 involves first writing it as 2
1 2

1
1( ) ( )+ − +x x

. You will meet this 

application in Chapter 8. 

This process of taking an expression such as 1
1 2 1( )( )� �x x

  and writing it in the 

form 2
1 2

1
1( ) ( )+ − +x x

 is called expressing the algebraic fraction in partial fractions.

When finding partial fractions you must always assume the most general numerator 
possible, and the method for doing this is illustrated in the following examples.

Type 1: Denominators of the form (ax + b)(cx + d)(ex + f )

EXAMPLE 7.6 Express 4
1 2

�
�

x
x x( )( – )

 as a sum of partial fractions.

SOLUTION

Assume

4
1 2 1 2

+
+ ≡ + +x

x x
A

x
B

x( )( – ) –

Multiplying both sides by (1 + x)(2 – x) gives

              4 + x  } A(2 – x) + B(1 + x). "1   

This is an identity; it is true for all values of x.

There are two possible ways in which you can find the constants A and B. 
You can either

● substitute any two values of x in "1  (two values are needed to give two 
equations to solve for the two unknowns A and B); or

● equate the constant terms to give one equation (this is the same as putting  
x " 0) and the coefficients of x to give another.

Sometimes one method is easier than the other, and in practice you will often 
want to use a combination of the two.

Remember: a linear 
denominator ¡ a constant 
numerator if the fraction is 

to be a proper fraction.
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Method 1: Substitution

Although you can substitute any two values of x , the easiest to use are x " 2 and     
x " �1, since each makes the value of one bracket zero in the identity.

4 � x } A(2 � x) � B(1 � x)

x " 2 ¡ 4 � 2 " A(2 � 2) � B(1 � 2)

         6 " 3B ¡ B " 2

x " �1 ¡ 4 � 1 " A(2 � 1) � B(1 � 1)

         3 " 3A ¡ A " 1

Substituting these values for A and B gives

       4 + x                1            2–––––––––––  }  –––– +  –––– 
(1 + x)(2 – x)     1 + x     2 – x

Method 2: Equating coefficients

In this method, you write the right-hand side of

 4 � x } A(2 � x) � B(1 � x)

as a polynomial in x , and then compare the coefficients of the various terms.

 4 � x  } 2A � Ax � B � Bx

 4 � 1x } (2A � B) � (�A � B)x

Equating the constant terms: 4 " 2A � B 

Equating the coefficients of x : 1 " �A � B

Solving these simultaneous equations gives A " 1 and B " 2 as before.

●? In each of these methods the identity (}) was later replaced by equality (").     
Why was this done?

In some cases it is necessary to factorise the denominator before finding the 
partial fractions.

EXAMPLE 7.7 Express x x
x x

( )
( )( )

5 7
2 1 12

+
+ −  as a sum of partial fractions.

SOLUTION 

x x
x x

( )
( )( )

5 7
2 1 12

+
+ −  " x x

x x x
( )

( )( )( )
5 7

2 1 1 1
+

+ + −

These are simultaneous 
equations in A and B.

Start by factorising the  
denominator fully, replacing 
(x2 – 1) with (x + 1)(x – 1).
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There are three factors in the denominator, so write

x x
x x x

A
x

B
x

C
x

( )
( )( )( )

5 7
2 1 1 1 2 1 1 1

+
+ + − ≡ + + + + −

Multiplying both sides by ( )( )( )2 1 1 1x x x+ + −  gives

x x A x x B x x C x x( ) ( )( ) ( )( ) ( )( )5 7 1 1 2 1 1 2 1 1+ ≡ + − + + − + + +  

Substituting x " 1 gives:  12 6" C

¡     C " 2

Substituting x " �1 gives:  − =2 2B

¡  B " �1

Equating coefficients of x2 gives:  5 2 2= + +A B C

As B " �1 and C " 2:                       5 2 4= − +A   

¡         A " 3  

Hence  x x
x x x x x x

( )
( )( )( )

5 7
2 1 1 1

3
2 1

1
1

2
1

+
+ + − ≡ + − + + −  

In the next example the orders of the numerator (top line) and the denominator 
(bottom line) are the same.

EXAMPLE 7.8 Express 6
4

2

2
�
�

x
x

 as a sum of partial fractions.

SOLUTION

Start by dividing the numerator by the denominator. 
In this case the quotient is 1 and the remainder is 2.

So   6
4

1 2
4

2

2 2
−
−

= +
−

x
x x

Now find  
2

4 2� x
.

2
4

2
2 2 2 22−

≡ + − ≡ + + −x x x
A

x
B

x( )( )

Multiplying both sides by (2 + x)(2 – x) gives

 2 } A(2 – x) + B(2 + x)  

 2 } (2A + 2B) + x (B – A) 

Equating constant terms: 2 " 2A + 2B
so A + B " 1 "1

Equating coefficients of x : 0 " B – A, so B " A

Substituting in "1   gives  A " B " 12

Notice how a 
combination of the two 

methods is used.

You can also use this  
method when the order of 

the numerator is greater than 
that of the denominator.
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Using these values

2
2 2 2 2

1
2

1
2

( )( )+ − ≡ + + −x x x x  
≡ + + −

1
2 2

1
2 2( ) ( )x x

So        6
4

1 1
2 2

1
2 2

2

2
−
−

≡ + + + −
x
x x x( ) ( )

EXERCISE 7C  Write the expressions in questions 1 to 15 as a sum of partial fractions.

  1 5
2 3( )( )x x− +    2 1

1x x( )�    3 6
1 4( )( )x x� �

  4 
x

x x
+

− +
5

1 2( )( )
   5 3

2 1 1
x

x x( )( )− +    6 4
22x x�

  7 2
1 3 1( )( )x x� �    8 x

x x
�

� �
1

3 42    9 x
x x
+
−
2

2 2

10 
7

2 62x x+ −
 11 2 1

2 3 202
x

x x
−

+ −
 12 2 5

18 82
x
x
+
−

13 6 22 18
1 2 3

2x x
x x x

� �
� � �( )( )( )

 14 4 25 3
2 1 1 3

2x x
x x x

− −
+ − −( )( )( )

 15 5 13 10
2 3 4

2

2
x x
x x

+ +
+ −( )( )

Type 2: Denominators of the form (ax + b)(cx2 + d)

EXAMPLE 7.9 Express 
2 3
1 42
x

x x
+

− +( )( )
 as a sum of partial fractions.

SOLUTION

You need to assume a numerator of order 1 for the partial fraction with a 
denominator of x2 + 4, which is of order 2.

2 3
1 4 1 42 2
x

x x
A

x
Bx C
x

+
− + ≡ − + +

+( )( )

Multiplying both sides by (x – 1)(x2 + 4) gives

 2x + 3 } A(x2 + 4) + (Bx + C)(x – 1)  "1   

x " 1     ¡      5 " 5A        ¡       A " 1

The other two unknowns, B and C, are most easily found by equating coefficients. 
Identity "1   may be rewritten as

 2x + 3 } (A + B)x2 + (–B + C)x + (4A – C)

Equating coefficients of x2: 0 " A + B      ¡ B " –1

Equating constant terms: 3 " 4A – C    ¡ C " 1

This gives

2 3
1 4

1
1

1
42 2

x
x x x

x
x

+
− + ≡ − + −

+( )( )

Bx + C is the most general 
numerator of order 1.
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Type 3: Denominators of the form (ax + b)(cx + d)2

The factor (cx + d)2 is of order 2, so it would have an order 1 numerator in the 
partial fractions. However, in the case of a repeated factor there is a simpler form.

Consider 4 5
2 1 2

x
x

�
�( )

This can be written as 2 2 1 3
2 1 2

( )
( )

x
x
� �
�

 
≡ +

+
+

+
2 2 1
2 1

3
2 12 2

( )
( ) ( )

x
x x

 
≡ + +

+
2

2 1
3

2 1 2( ) ( )x x

Note

In this form, both the numerators are constant.

In a similar way, any fraction of the form 
px q
cx d

�
�( )2  can be written as

A
cx d

B
cx d( ) ( )�

�
� 2

When expressing an algebraic fraction in partial fractions, you are aiming to find 
the simplest partial fractions possible, so you would want the form where the 
numerators are constant.

EXAMPLE 7.10 Express 
x

x x
+

− −
1

1 2 2( )( )
 as a sum of partial fractions.

SOLUTION

Let x
x x

A
x

B
x

C
x

+
− − ≡ − + − + −

1
1 2 1 2 22 2( )( ) ( ) ( ) ( )

Multiplying both sides by (x – 1)(x – 2)2 gives

 x + 1 } A(x – 2)2 + B(x – 1)(x – 2) + C(x – 1)

x " 1 (so that x – 1 " 0) ¡ 2 " A(–1)2 ¡ A " 2
x " 2 (so that x – 2 " 0)  ¡ 3 " C

Equating coefficients of x2: ¡ 0 " A + B ¡ B " –2

This gives

            

x
x x x x x

+
− − ≡ − − − + −

1
1 2

2
1

2
2

3
22 2( )( ) ( )

Notice that you only 
need (x – 2)2 here 
and not (x – 2)3.
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EXAMPLE 7.11 Express 
5 3

1

2

2
x

x x
−
+( )  as a sum of partial fractions.

SOLUTION

Let 5 3
1 1

2

2 2
x

x x
A
x

B
x

C
x

−
+( ) ≡ + + +

Multiplying both sides by x2(x + 1) gives

 5x2 – 3 } Ax(x + 1) + B(x + 1) + Cx2

x " 0 ¡ –3 " B
x " –1 ¡ +2 " C

Equating coefficients of x2:     +5 " A + C     ¡     A " 3

This gives

 
5 3

1
3 3 2

1

2

2 2
x

x x x x x
−
+ ≡ − + +( )

EXERCISE 7D 1  Express each of the following fractions as a sum of partial fractions.

(i) 4
1 3 1 2( )( )� �x x

 (ii) 4 2
2 1 12

+
− +

x
x x( )( )

   (iii) 5 2
1 22
−

− +
x

x x( ) ( )
   

(iv) 
2 1
2 42
x

x x
+

− +( )( )
 (v) 2 4

2 3 2

2

2
x x

x x
+ +

− +( )( )
  (vi) x

x x

2

2
1

2 1
−
+( )

   

(vii)  x
x x

2

2
3

3 1
+
−( )

 (viii)  2 2
2 1 1

2

2
x x

x x
� �

� �( )( )
 (ix) 4 3

2 1

2

2
x

x x
�
�( )

  

2 Given that

x x
x x

A
x

Bx C
x

2

2 2
2 7

2 3 4 2 3 4
+ +
+ + ≡ + + +

+( )( ) ( ) ( )   

find the values of the constants A, B and C.
[MEI, part] 

3 Calculate the values of the constants A, B and C for which

x x
x x

A
x

Bx C
x

2

2 2
4 23

5 3 5 3
− +
− + ≡ − + +

+( )( ) ( ) ( )   

[MEI, part]
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Using partial fractions with the binomial expansion

One of the most common reasons for writing an expression in partial fractions is 
to enable binomial expansions to be applied, as in the following example.

EXAMPLE 7.12 Express 2 7
1 2
x

x x
+

− +( )( ) in partial fractions and hence find the first three terms of 

its binomial expansion, stating the values of x for which this is valid.

SOLUTION

2 7
1 2 1 2
x

x x
A

x
B

x
+

− + ≡ − + +( )( ) ( ) ( )

Multiplying both sides by (x – 1)(x + 2) gives

 2x + 7 } A(x + 2) + B(x – 1)

x " 1 ¡ 9 " 3A ¡ A " 3
x " –2 ¡ 3 " –3B ¡ B " –1

This gives

      

2 7
1 2

3
1

1
2

x
x x x x

+
− + ≡ − − +( )( ) ( ) ( )

In order to obtain the binomial expansion, each bracket must be of the form      
(1 ± …), giving

2 7
1 2

3
1

1

2 1
2

x
x x x x

+
− + ≡ −

− −
+( )( )( ) ( )

 
≡ − − − +( )−

−
3 1 1

2
1

2
1

1

( )x x     "1  

The two binomial expansions are

(1 – x)–1 " 1 + (–1)(–x) + 
( )( )

!
� �1 2

2  (–x)2 + …     for a  x   a ! 1

 ~ 1 + x + x2

and  

  

1
2

1 1
2

1 2
2 2 2

1

1

1 2

+( ) = + − ( ) + − − ( ) +

≈ −

−
x x x x( ) ( )( )

!
# for !

xx x
2 4

2
+

Substituting these in "1  gives

2 7
1 2

3 1 1
2

1
2 4

7
2

11

2
2x

x x
x x x x+

− + ≈ − + + − − +⎛
⎝

⎞
⎠

= − −

( )( )
( )

xx x
4

25
8

2
−     

 

The expansion is valid when a x  a ! 1 and ² �x2 ² ! 1. The stricter of these is a x a ! 1.

0
0( ) 0

0( )
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INVESTIGATION

Find a binomial expansion for the function

f(x) " 1
1 2 1( )( )+ −x x

and state the values of x for which it is valid

(i) by writing it as (1 + 2x)–1(1 – x)–1

(ii) by writing it as [1 + (x – 2x2)]–1 and treating (x – 2x2) as one term
(iii) by first expressing f(x) as a sum of partial fractions.

Decide which method you find simplest for the following cases.
(a) When a linear approximation for f(x) is required.
(b) When a quadratic approximation for f(x) is required.
(c) When the coefficient of xn is required.

EXERCISE 7E 1   Find the first three terms in ascending powers of x  in the binomial expansion 
of the following fractions.

(i) 4
1 3 1 2( )( )� �x x

                    (ii) 4 2
2 1 12

+
− +

x
x x( )( )

                               

(iii) 5 2
1 22
−

− +
x

x x( ) ( )
 (iv) 2 1

2 42
x

x x
+

− +( )( )
   

2 (i) Express 7 4
2 1 2

−
− +

x
x x( )( )

 in partial fractions as A
x

B
x( ) ( )2 1 2− + +  where  

  A and B are to be found.

(ii) Find the expansion of 
1

1 2( )� x  in the form a + bx + cx2 + … where a, b and 

 c are to be found. 
Give the range of values of x for which this expansion is valid.

(iii) Find the expansion of 
1

2( )� x  as far as the term containing x2.  

 Give the range of values of x for which this expansion is valid.

(iv) Hence find a quadratic approximation for 7 4
2 1 2

−
− +

x
x x( )( ) when a x  a is small.

 Find the percentage error in this approximation when x " 0.1.
 [MEI]

3 (i) Expand (2 – x)(1 + x).

  Hence express 3
2 2

x
x x+ −  

in partial fractions.

(ii) Use the binomial expansion of the partial fractions in part (i) to show that

3
2

3
2

3
42

2x
x x

x x
+ −

= − +#.

 State the range of values of x for which this result is valid.

 [MEI, part]
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4   (i) Given that f(x) " 8 6
1 3

x
x x

�
� �( )( )

, express f(x) in partial fractions.

Hence show that

f '(x) " (1 – x)–2 – (1 – x
3)

–2
.

(ii) Using the results in part (i), or otherwise, find the x co-ordinates of the 
stationary points on the graph of y " f(x).

(iii) Use the binomial expansion, together with the result in part (i), to expand 
f '(x) in powers of x up to and including the term in x2.

(iv) Show that, when f '(x) is expanded in powers of x, the coefficients of all the 
powers of x are positive. 

 [MEI]

5 (i) Express 
10

2 1 2( )( )− +x x
 in partial fractions.

(ii) Hence, given that a���x   a ! 1, obtain the expansion of 
10

2 1 2( )( )− +x x
 in 

 ascending powers of x, up to and including the term in x3, simplifying the 
coefficients.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2006]

6 (i) Express 3
2 1

2

2
x x

x x
�

� �( )( )
 in partial fractions.

(ii) Hence obtain the expansion of 3
2 1

2

2
x x

x x
�

� �( )( )
 in ascending powers of x,

 up to and including the term in x3.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 November 2005]

7 (i) Express 2 8
1 1 2 2

2− +
− + +

x x
x x x( )( )( ) in partial fractions.

(ii) Hence obtain the expansion of 2 8
1 1 2 2

2− +
− + +

x x
x x x( )( )( ) in ascending powers

 of x, up to and including the term in x2.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 November 2007]
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KEY POINTS

1 The general binomial expansion for n ! # is 

(1 + x)n " 1 + nx + n n( )
!
� 1

2
x2 + n n n( )( )

!
� �1 2

3
x3 + … .

 In the special case when n ! !, the series expansion is finite and valid           
for all x.

 When n " !, the series expansion is non-terminating (infinite) and valid 
only if a  x   a ! 1.

2  When n " !, (a + x)n should be written as an (1 +  
x
a )

n
 before obtaining the 

binomial expansion.

3 When multiplying algebraic fractions, you can only cancel when the same 
factor occurs in both the numerator and the denominator.

4 When adding or subtracting algebraic fractions, you first need to find a 
common denominator.

5 The easiest way to solve any equation involving fractions is usually to   
multiply both sides by a quantity which will eliminate the fractions.

6 A proper algebraic fraction with a denominator which factorises can be 
decomposed into a sum of proper partial fractions.

7 The following forms of partial fraction should be used.

px q
ax b cx d ex f

A
ax b

B
cx d

C
ex f

px qr

+
+ + + ≡ + + + + +

+ +
( )( )( )

2 rr
ax b cx d

A
ax b

Bx C
cx d

px qx r
ax b c

( )( )

( )(

+ + ≡ + + +
+

+ +
+

2 2

2

xx d
A

ax b
B

cx d
C

cx d+ ≡ + + + + +) ( )2 2
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Further integration

The mathematical process has a reality and virtue in itself, and once 
discovered it constitutes a new and independent factor.

Winston Churchill (1876–1965)

Figure 8.1 shows the graph of y = x .

●? How does it allow you to find the shaded area in the graph in figure 8.2?

2

1

0 1 2 3 4 x

y

y = x

Figure 8.1 

2

1

0 1 2 3 4 x

y

y = x + 1

Figure 8.2 

177

8
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Integration by substitution

The graph of y = x � 1 is shown in figure 8.3.

The shaded area is given by

µ 1

5
1x x− =d  µ

You may remember how to investigate this by inspection. However, you can also 
transform the integral into a simpler one by using the substitution u = x – 1 to 

get u u
a

b
1
2 dµ .

When you make this substitution it means that you are now integrating with 
respect to a new variable, namely u. The limits of the integral, and the ‘dx ’, must 
be written in terms of u.

The new limits are given by  x = 1 ¡ u = 1 – 1 = 0
 and  x = 5 ¡ u = 5 – 1 = 4.

Since u = x – 1, 
du
––
dx

 = 1.

Even though 
du
––
dx

 is not a fraction, it is usual to treat it as one in this situation (see 

the warning below), and to write the next step as ‘du = dx’.

The integral now becomes:

u u u

u

u

u 1
2

3
2

3
2

1

0

4

0

4

0

4
2
3

5

3
2

d =
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

=

=
∫

33

O 51 x

y y = x – 1

Figure 8.3 

][

[ ]

1

5
1

1
2( – ) .x xd
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This method of integration is known as integration by substitution. It is a very 
powerful method which allows you to integrate many more functions. Since you 
are changing the variable from x to u, the method is also referred to as integration 
by change of variable.

!  The last example included the statement ‘du " dx’. Some mathematicians are 
reluctant to write such statements on the grounds that du and dx may only            

 be used in the form d
d

u
x

, i.e. as a gradient. This is not in fact true; there is a

 well-defined branch of mathematics which justifies such statements but it is well  
beyond the scope of this book. In the meantime it may help you to think of it as 

 shorthand for ‘in the limit as Ix q 0, I
I

u
x

 q 1, and so Iu " Ix ’.

EXAMPLE 8.1 Evaluate ( )x +∫ 1 3
1

3
 dx by making a suitable substitution.

SOLUTION

Let u = x + 1.

Converting the limits:  x = 1 ¡ u = 1 + 1 = 2
 x = 3 ¡ u = 3 + 1 = 4

Converting dx to du:

 
du
––
dx

 = 1  ¡  du = dx.

( )x x u u

u

+ =

= ⎡
⎣⎢

⎤
⎦⎥

= −

=

∫ ∫1

4

4
4

2
4

60

3
1

3
3

2

4

4

2

4

4 4

d d

●? Can integration by substitution be described as the reverse of the chain rule?

O 1

1

3 x

y y   �x � 1�3

Figure 8.4
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EXAMPLE 8.2 Evaluate  µ3

4
2x(x2 � 4)

1
2 dx by making a suitable substitution.

SOLUTION

Notice that 2x is the derivative of the expression in the brackets, x2 � 4, and so         
u " x2 � 4 is a natural substitution to try.

This gives d
d

u
x

 " 2x    ¡    du " 2x dx

Converting the limits: x " 3 ¡ u " 9 � 4 " 5
 x " 4 ¡ u " 16 � 4 " 12

So the integral becomes: 

 µ3

4
(x2 � 4)

1
2 2x dx " µ5

12

 
u

1
2 du

       
 " [2

3

3
2u ]12

5      

 " 20.3  (to 3 significant figures)

Note

In the last example there were two expressions multiplied together; the second 

expression is raised to a power. The two expressions are in this case related, since 

the first expression, 2x, is the derivative of the expression in brackets, x2 � 4. It was 

this relationship that made the integration possible.

EXAMPLE 8.3 Find µx(x2 � 2)3 dx by making an appropriate substitution.

SOLUTION

Since this is an indefinite integral there are no limits to change, and the final 
answer will be a function of x.

Let u " x 2 � 2, then:

d
d

u
x

 " 2x  ¡  1
2 

du " x dx 

So µx(x2 � 2)3 dx " µ(x2 � 2)3x dx

 " µu3 w 1
2 

du

 " u4

8  
� c

      " ( )x c
2 42

8
� �

You only have x dx in 
the integral, not 2x dx.
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!  Always remember, when finding an indefinite integral by substitution, to 

substitute back at the end. The original integral was in terms of x, so your final 
answer must be too.

EXAMPLE 8.4 By making a suitable substitution, find µx x � 2 dx.

SOLUTION

This question is not of the same type as the previous ones since x is not the 
derivative of (x � 2). However, by making the substitution u " x � 2 you can still 
make the integral into one you can do.

Let u " x � 2, then:

d
d

u
x

 " 1    ¡    du " dx

There is also an x in the integral so you need to write down an expression for x     
in terms of u. Since u " x � 2 it follows that x  " u � 2.

In the original integral you can now replace x � 2 by u
1
2, dx by du and x by u � 2.

µx x � 2 dx " µ(u � 2)u
1
2 du

 " µ(u3
2 � 2u

1
2) du

 " 2
5

5
2u  � 4

3

3
2u  � c

Replacing u by x � 2 and tidying up gives 2
15(3x � 4)(x � 2)

3
2  � c.

ACTIVITY 8.1 Complete the algebraic steps involved in tidying up the answer above.

EXERCISE 8A 1   Find the following indefinite integrals by making the suggested substitution.   
Remember to give your final answer in terms of x.

(i) µ3x2(x3 � 1)7 dx, u " x3 � 1 (ii) µ2x(x2 � 1)5 dx, u " x2 � 1

(iii) µ3x2(x3 � 2)4 dx, u " x3 � 2  (iv) µx 2 52x �  dx , u " 2x2 � 5

(v) µx 2 1x �  dx , u " 2x � 1 (vi) µ x

x � 9
 dx, u " x � 9

2 Evaluate each of the following definite integrals by using a suitable 
substitution. Give your answer to 3 significant figures where appropriate.

(i) µ1

5
x2(x3 � 1)2 dx (ii) µ�1

2
2x(x � 3)5 dx 

(iii) µ1

5
x x � 1 dx
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3    Find the area of the shaded region for each of the following graphs.

4 The sketch shows part of the graph of y " x x1 � .

(i) Find the co-ordinates of point A and the range of values of x for which the 
function is defined.

(ii) Show that the area of the shaded region is 4
15

. 

 You may find the substitution u " 1 � x useful.
 [MEI]

5 (i) By substituting u " 1 � x or otherwise, find

(a) µ(1 � x)3 dx  (b) µ�1

1
x(1 � x)3 dx.

(ii) By substituting t " 1 � x2 or otherwise, evaluate µ1

0
x 1 2� x  dx.

[MEI]

6 (i) Integrate with respect to x.

(a)  4 3
3x x

�
 
 (b) 6x(1 � x 2)

1
2

          
(ii) Show that the substitution x " u2 transforms µ1

4 1
3

+( )x

x  
dx into an  

          integral of the form µa

b
k(1 � u)3 du.

  State the values of k, a and b.

   Evaluate this integral.
[MEI, adapted]

O
1

–1

x

y
y   �x�x2 � 1�3

O 1 2 4 x

y
y  x

�x ± 1�3

(i)

O
1

–1

x

y
y   �x�x2 � 1�3

O 1 2 4 x

y
y  x

�x ± 1�3

(ii)

O
A x

y

y = x 1 � x
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Integrals involving exponentials and natural logarithms

In Chapter 5 you met integrals involving logarithms and exponentials. That work 
is extended here using integration by substitution.

EXAMPLE 8.5 By making a suitable substitution, find µ0

4
2x ex2 dx.

SOLUTION

 µ0

4
2x ex2 dx " µ0

4
ex2 2x  dx

Since 2x is the derivative of x2, let u " x2.

d
d

u
x

 " 2x    ¡    du " 2x  dx

The new limits are given by x  " 0 ¡ u " 0 
 and x  " 4 ¡ u " 16

The integral can now be written as 

µ0

16

 
eu du " [eu]16 

0

 " e16 � e0

 " 8.89 w 106          (to 3 significant figures)

EXAMPLE 8.6 Evaluate µ1

5 2
32

x
x � dx.

SOLUTION

In this case, substitute  
u " x 2 � 3, so that 

d
d

u
x

  " 2x  ¡  du " 2x dx

The new limits are given by
       x " 1     ¡     u " 4 
and x " 5     ¡     u " 28

µ1

5 2
32

x
x � dx " µ4

28 1
u

du

 " [ln u]28
 

4

 " ln 28 � ln 4

 " 1.95        (to 3 significant figures)

y  2x
x2 � 3

51O x

y

Figure 8.5
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The last example is of the form µ f '( )
f( )

x
x

dx, where f(x) " x2 � 3. In such cases the 

substitution u " f(x) transforms the integral into µ 1
u

 du. The answer is then            

ln u � c or ln(f(x)) � c (assuming that u " f(x) is positive). This result may be 
stated as the working rule below.

If you obtain the top line when you differentiate the bottom line, the integral is 
the natural logarithm of the bottom line. So,

µ f '( )
f( )

x
x dx " ln a f(x) a � c.

EXAMPLE 8.7 Evaluate µ1

2 5 2
4

4

5 2
x x

x x
�

� �
dx.

SOLUTION

You can work this out by substituting u " x5 � x2 � 4 but, since differentiating the 
bottom line gives the top line, you could apply the rule above and just write:

µ1

2 5 2
4

4

5 2
x x

x x
�

� �
dx  " [ln(x5 � x2 � 4)]2

1
  

 " ln 40 � ln 6 

 " 1.90        (to 2 significant figures)

In the next example some adjustment is needed to get the top line into the 
required form.

EXAMPLE 8.8 Evaluate µ0

1 x
x

5

6 7�
dx.

SOLUTION

The differential of x6 � 7 is 6x5, so the integral is rewritten as 1
6 µ0

1 6
7

5

6
x

x �
dx.

Integrating this gives 1
6  [ln(x6 � 7)]1

0
 or 0.022 (to 2 significant figures).

EXERCISE 8B 1  Find the following indefinite integrals.

(i) µ 2
12

x
x � dx (ii) µ 2 3

3 9 12
x

x x
+

+ − dx

(iii) µ12x2 ex3
dx

2 Find the following definite integrals.  
Where appropriate give your answers to 3 significant figures.

(i) µ2

3

 
2x e�x2 dx (ii) µ2

4 x
x x

−
− +

3
6 92 dx
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3     The sketch shows the graph of y " xex2.

(i) Find the area of region A.

(ii) Find the area of region B.

(iii) Hence write down the total area of the shaded region. 

4 The graph of y " x
x x

�
� �

2
4 32  is shown below.

Find the area of each shaded region.

5  A curve has the equation y " (x � 3)e�x.

(i) Find 
d
d

y
x

.

(ii) Hence find µ x xx
� 2
e

d .

(iii) Find the x and y co-ordinates of the stationary point S on the curve.

(iv) Calculate 
d
d

2

2
y

x
 at the point S. 

  What does its value indicate about the stationary point?

(v) Show that the substitution u " ex converts µ 2
2

� lnu
u

du into µ 2 � x
xe

dx.

(vi) Hence evaluate µ1

e 2
2

� lnu
u

du.                  
 [MEI, adapted]

y

xO

–1

2A

B

y

x� 1 2±1±2±3
±�±�
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6 (i) Use a substitution, such as u2 " 2x � 3, to find µ 2x 2 3x � dx.

(ii) Differentiate x
1
2 ln x with respect to x. Hence find µ 2 � lnx

x
dx.

(iii) The function f(x) has the property f  '(x) " e�x2.

(a) Find f ''(x).

(b) Differentiate f(x3) with respect to x.
 [MEI]

7 (i) Find the following integrals.

 (a) µ1

6 1
2 3x � dx

 (b) µ
x

x9 2�
dx (Use the substitution v " 9 2� x , or otherwise.)

(ii) (a) Show that d
dx

(e�x2) " �2x e�x2.

 The sketch below shows the curve with equation y " x e�x2.

(b) Differentiate x e�x2 and find the co-ordinates of the two stationary 
points on the curve.

(c) Find the area of the region between the curve and the x axis for               
0 ! x ! 0.4.

 [MEI]

8 (i) Sketch the curve with equation y " 
e

e

x

x � 1
for values of x between 0 and 2.

(ii) Find the area of the region enclosed by this curve, the axes and the line x " 2.

(iii) Find the value of  µ1

e 2
12

t
t � dt. 

(iv) Compare your answers to parts (ii) and (iii). Explain this result.

9 (i) Differentiate with respect to x
 (a) e�2x2 (b) x e�2x2.

 You are given that f(x) " xe�2x2.

(ii) Find µ0

k
f(x) dx in terms of k.

(iii) Show that f '' (x) " 4xe�2x2(4x 2 ��3).

(iv) Show that there is just one stationary point on the curve y " f(x) for 
positive x. State its co-ordinates and determine its nature.

[MEI]

x

y

O
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10 The diagram shows part of the curve y x
x

=
+2 1

 and its maximum point M. 

The shaded region R is bounded by the curve and by the lines y = 0 and x = p.

(i) Calculate the x co-ordinate of M.

(ii) Find the area of R in terms of p.

(iii) Hence calculate the value of p for which the area of R is 1, giving your 
answer correct to 3 significant figures.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2005]

11  Let I "�µ1

4 1
4x x

x
( )

.� d
�

(i) Use the substitution u = �x to show that I " µ1

2 2
4u u

u
( )

.� d
 

(ii) Hence show that I " 1
2 3ln .  

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 June 2007]

Integrals involving trigonometrical functions

In Chapter 5 you met integrals involving trigonometrical functions. That work is 
extended here using integration by substitution.

EXAMPLE 8.9 Find µ  2x cos(x2 � 1) dx.

SOLUTION

Make the substitution u " x2 � 1. Then differentiate.

 d
d

u
x

 " 2x   ¡  2x dx " du

 µ  2x cos(x2 � 1) dx  "  µ  cosu du

  "  sinu � c
  "  sin(x2 � 1) � c

Notice that the last example involves two expressions multiplied together, namely 
2x  and cos(x2 + 1). These two expressions are related by the fact that 2x 
is the derivative of x2 + 1. Because of this relationship, the substitution 
u = x2 + 1 may be used to perform the integration. You can apply this method to 
other integrals involving trigonometrical functions, as in the next example.

M

R

S
O

y

x
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EXAMPLE 8.10 Find µ
π
2

0 
cos x sin2 x dx.

SOLUTION

This integral is the product of two expressions, cos x and (sin x)2.

Now (sin x)2 is a function of sin x , and cos x is the derivative of sin x , so you 
should use the substitution u " sin x.

Differentiating:
d
d

u
x

 " cos x  ¡ du " cos x dx.

The limits of integration need to be changed as well:

x " 0 ¡ u " 0

x " π
2

 ¡ u " 1

Therefore  µ
π
2

0 
cos x sin2 x dx " µ1

0 
u2 du

  " u3

0

1

3
⎡
⎣⎢

⎤
⎦⎥

  " 13

EXAMPLE 8.11 Find µ  cos3 x dx.

SOLUTION

First write cos3 x " cos x cos2 x.

Now remember that

cos2 x � sin2 x " 1      ¡      cos2 x " 1 � sin2 x.

This gives

cos3 x " cos x (1 � sin2 x) 
  " cos x � cos x  sin2 x

The first part of this expression, cos x , is easily integrated to give sin x.

The second part is more complicated, but you can see that it is of a type that you 
have met already, as it is a product of two expressions, one of which is a function 
of sin x and the other of which is the derivative of sin x. This can be integrated ei-
ther by making the substitution u " sin x or simply in your head (by inspection). 

µ  cos3 x dx " µ  (cos x � cos x  sin2 x) dx

 " sin x � 13 sin3 x � c

EXAMPLE 8.12 Find 

(i) µ  cot x dx  

(ii) µ
π
3

π
6 
 tan x dx

Remember that 
sin2 x means the 
same as (sin x)2.
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SOLUTION  

(i) Rewrite cot x  as cos
sin

.x
x

 

µ  cot x dx " �µcos
sin

.x
x

 dx

 Now you can use the substitution u " sin x.

d
d

u
x  

" cos x ¡ du = cos x dx

µcos
sin

.x
x

 dx " �µ 1
sinx

 w cos x dx " µ  1u du

� � � " ln a u a��� c�" ln a��sin x a��� c  

  You may have noticed that the integral µ  cos
sin

.x
x

 dx is in the form�

µ  f
f
'( )
( )

x
x

 

 dx = ln a f(x) a��� c, and so you could have written the answer down directly.

(ii)  µ
π
3

   π
6

  tan x dx " µ
π
3

   π
6

   sin
cos

x
x

 dx

 Adjusting the numerator to make it the derivative of the denominator gives:

 �µ
π
3

   π
6

   sin
cos

x
x

 dx " ��µ
π
3

   π
6

   –sin
cos

x
x

 dx

� � � " [�ln a cos x a�]�
π
3

   π
6

  

   " −⎡
⎣⎢

⎤
⎦⎥
− −⎡
⎣⎢

⎤
⎦⎥

ln ln1
2

3
2  

   " –ln 
1
2 � ln 3

2

   " ln 3  

   " 1
2  ln 3

Note

You may find that as you gain practice in this type of integration you become able 

to work out the integral without writing down the substitution. However, if you are 

unsure, it is best to write down the whole process.

EXERCISE 8C 1  Integrate the following by using the substitution given, or otherwise.

(i) cos 3x    u " 3x

(ii) sin(1 � x)    u " 1 � x

(iii) sin x cos3 x    u " cos x

(iv) sin
cos

x
x2 �

                 u " 2 � cos x

(v) tan x   u " cos x      (write tan x as sin
cos

x
x )

(vi) sin 2x (l � cos 2x)2  u " 1 � cos 2x

cos 
π
3

1
2

=  and

cos 
π
6

3
2

=

Use the laws of logs:

ln – ln ln
3

2
1
2

3
2

1
2

= ÷⎛
⎝⎜

⎞
⎠⎟

Use the laws of logs:

ln 3 3 3
1
2 1

2
" "ln ln

The ‘top line’ is the 
derivative of the 
‘bottom line’.
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2 Use a suitable substitution to integrate the following.

(i) 2x  sin(x2) (ii) cos x  esin x

(iii) 
tan
cos

x
x2  (iv) 

cos
sin

x
x2            

3 Evaluate the following definite integrals by using suitable substitutions.

(i) µ
π
2

0
cos(2x � π

2) dx (ii) µ
π
4

0
cos x sin3x dx

(iii) µ π

0   
x  sin(x2) dx (iv) µ

π
4

0

etan

cos

x

x2 dx

(v) µ
π
4

0 

1
12cos tanx x+( ) dx

4 (i) Use the substitution x = tan θ to show that

 µ 1
1

2

2 2
−
+

=x
x

x
( )

d
��µ

(ii) Hence find the value of

 µ0

1 1
1

2

2 2
−
+

x
x

x
( )

.d

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q4 June 2005]

5 (i) Express cos θ � (�3)sin θ in the form R cos(θ ���α), where R > 0 and 
0 < α < 1

2U, giving the exact values of R and α.

(ii) Hence show that µ0

1
2 1

3
1
32

π

(cos ( )sin )
.

θ θ
θ

+
d =

���������������������������������������������������������������

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 June 2007]

6 (i) Use the substitution x " sin2θ to show that 

µ x
x

x
1

2 2
−( ) =d dsin θ θ

����������������������������������������������µ                  .

(ii) Hence find the exact value of

µ0

1
4

1
.x

x
x−( )d

��
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q6 November 2005]

The use of partial fractions in integration

●? Why is it not possible to use any of the integration techniques you have learnt so 

 far to find µ 2
12x �
 dx?

cos .2θ θd
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Partial fractions reminder

In Chapter 7 you met partial fractions. Here is a reminder of the work you did 
there.

Since x2 � 1 can be factorised to give (x � 1)(x � 1), you can write the expression 
to be integrated as partial fractions.

2
1 1 12x

A
x

B
x−

= − + +  

         2 } A(x � 1) � B(x � 1)

Let x " 1 2 " 2A ¡ A " 1
Let x " �1 2 " �2B ¡ B " �1

Substituting these values for A and B gives

2
1

1
1

1
12x x x−

= − − +
.

The integral then becomes

µ 2
12x �

 dx " µ 1
1x �  dx ��µ 1

1x �  dx.

Now the two integrals on the right can be recognised as logarithms. 

µ 2
12x �

 dx " ln a x � 1 a � ln a x � 1 a � c

 " ln² x
x
−
+

1
1

 ² � c

Here you worked with the simplest type of partial fraction, in which there are two 
different linear factors in the denominator. This type will always result in two 
fractions both of which can be integrated to give logarithmic expressions.  
Now look at the other types of partial fraction.

A repeated factor in the denominator

EXAMPLE 8.13 Find µ  x
x x

+
− +

4
2 1 1 2( )( )

 dx.

SOLUTION

First write the expression as partial fractions:

x
x x

A
x

B
x

C
x

+
− +

=
−

+
+

+
+

4
2 1 1 2 1 1 12 2( )( ) ( ) ( ) ( )

where                 x � 4 } A(x � 1)2 � B(2x � 1)(x � 1) � C(2x � 1).

Let x " �1  3 " �3C  ¡ C " �1

Let x " 1
2  9

2 " A(3
2)2

  ¡ 9
2  " 9

4 A  ¡ A " 2

Let x " 0 4 " A � B � C  ¡ B " A � C � 4 " 2 � 1 � 4 " �1

This is true for all values        
of x. It is an identity and to 
emphasise this point we use 

the identity symbol }.
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Substituting these values for A, B and C gives

x
x x x x x

+
− +

=
−

−
+

−
+

4
2 1 1

2
2 1

1
1

1
12 2( )( ) ( ) ( ) ( )

Now that the expression is in partial fractions, each part can be integrated 
separately.

µ x
x x

+
− +

4
2 1 1 2( )( )  dx " µ 2

2 1( )x �  dx � µ 1
1( )x �  dx � µ 1

1 2( )x �  dx

The first two integrals give logarithmic expressions as you saw above. The 
third, however, is of the form u�2 and therefore can be integrated by using the 
substitution u " x � 1, or by inspection (i.e. in your head).

µ x
x x

+
− +

4
2 1 1 2( )( )

 dx " ln a 2x � 1 a � ln a x � 1 a � 1
1x �  � c

             " ln² 
2 1

1
x

x
−
+  ² � 1

1x �  � c

A quadratic factor in the denominator

EXAMPLE 8.14 Find 
x

x x
−

+ +
2

2 12( )( ) dx.

SOLUTION

First write the expression as partial fractions:

x
x x

−
+ +

2
2 12( )( )

 " Ax B
x

�
�( )2 2

 � C
x( )� 1

            

where                x � 2 } (Ax � B)(x � 1) � C(x2 � 2)

Rearranging gives

                              x � 2 } (A � C)x2 � (A � B)x � (B � 2C)

Equating coefficients:

                        x2 ¡ A � C " 0
     x ¡ A � B " 1
constant terms  ¡ B � 2C " �2

Solving these gives A " 1, B " 0, C " �1. 

Hence

�������������������

x
x x

−
+ +

2
2 12( )( )

 " x
x( )2 2�

 � 1
1( )x �          
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µ x

x x
−

+ +
2

2 12( )( )
 dx " µ x

x( )2 2�
 dx � µ 1

1( )x �  dx

               " 1
2µ 2

22
x

x( )�
 dx � µ 1

1( )x �  dx

               " 1
2 ln a x2 � 2 a � ln a x � 1 a � c

               " ln² x
x

2 2
1
�

�
 ² � c

Note

                                                                                                                        If B had not been zero, you would have had an expression of the form Ax B
x

�
�2 2

 to 
                                                                                                                         
integrate. This can be split into Ax

x
B

x2 22 2�
�

�
�

The first part of this can be integrated as in Example 8.13, but the second part cannot 
be integrated by any method you have met so far. If you come across a situation 
where you need to find such an integral, you may choose to use the standard result:

      µ 1
2 2( )x a�

 dx " 1
a

 tan–1( x
a ) � c.

 

EXERCISE 8D 1   Express the fractions in each of the following integrals as partial fractions, and 
hence perform the integration.

(i)  µ 1
1 3 2( )( )� �x x

 dx  (ii) µ 7 2
1 2 32
x

x x
−

− +( ) ( )
 dx

(iii)  µ x
x x

+
+ −

1
1 12( )( )

 dx (iv) µ 3 3
1 2 1
x

x x
+

− +( )( )
 dx

(v)  µ 1
12x x( )�

 dx (vi) µ 1
1 3( )( )x x� �  dx

(vii)   µ 2 4
4 22
x

x x
−

+ +( )( )
 dx (viii) µ 5 1

2 2 1 2
x

x x
�

� �( )( )
 dx

2  Express in partial fractions

f(x) " 3 4
4 32
x

x x
+

+ −( )( )
                      

 and hence find µ2

0 
f(x) dx.

 [MEI, adapted]

3   Express 
1

2 12x x( )�  in partial fractions. Hence show that 

µ 2

1 

dx
x x2 2 1( )�  "  

1
2  � 2 ln 

5
6.

  [MEI]

4 (i) (a) Express 
3

1 1 2( )( )+ −x x  in partial fractions.

(b) Hence find

 µ 0.1

0
  

3
1 1 2( )( )+ −x x  dx

 giving your answer to 5 decimal places.

1–
2 ln a x2 + 2 a " ln x2 2�  

Notice that (x2 + 2) is positive 

for all values of x.



Fu
rt

h
er

 i
n

te
g

ra
ti

o
n

194

P3 

8

(ii) (a) Find the first three terms in the binomial expansion of   

 3(1 � x)�1(1 � 2x)�1.

(b) Use the first three terms of this expansion to find an approximation for 

                            3     µ 0.1

0
  ������������ dx.

           (1 � x)(1 � 2x) 

(c) What is the percentage error in your answer to part (b)?

5 (i) Given that 

 

x x
x x

A B
x

C
x

2 24
2 4 2 4
− −

+ − ≡ + + + −( )( ) ( ) ( )
,

find the values of the constants A, B and C.

(ii) Find µ
3

1
 

x x
x x

2 24
2 4
− −

+ −( )( ) dx.
[MEI]

6 (i) Given that f(x) " 
16 2 15
1 2 1 2

2

2 2
+ +
+ −

≡ +
+

+
−

x x
x x

A Bx
x

C
x( )( )

, find the values of

  B and C and show that A " 0.

(ii) Find µ1

0 
f(x) dx in an exact form.

(iii) Express f(x) as a sum of powers of x up to and including the term in x4. 

 Determine the range of values of x for which this expansion of f(x) is valid.
[MEI]

7 (i) Find the values of the constants A, B, C and D such that

2 1
2 1 2 1

3

2 2
x

x x
A B

x
C
x

D
x

–
( – ) –

.≡ + + +

(ii) Hence show that

            µ
2

1

2 1
2 1

3
2

1
2

16
27

3

2
x

x x
x–

( – )
n .d l= + ( )

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q10 June 2010]

8 Let f( )
( )( )

.x x x
x x

≡ + +
+ +
2 3 3

1 3

(i) Express f(x) in partial fractions.

(ii) Hence show that f d ln( ) – .x x =∫ 3 21
20

3

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 June 2008]

Integration by parts

There are still many integrations which you cannot yet do. In fact, many 
functions cannot be integrated at all, although virtually all functions can be 
differentiated. However, some functions can be integrated by techniques which 
you have not yet met. Integration by parts is one of those techniques.
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EXAMPLE 8.15 Find µx  cos x dx.

SOLUTION

The expression to be integrated is clearly a product of two simpler expressions, 
x and cos x , so your first thought may be to look for a substitution to enable 
you to perform the integration. However, there are some expressions which are 
products but which cannot be integrated by substitution. This is one of them. 
You need a new technique to integrate such expressions.

Take the expression x sin x and differentiate it, using the product rule.

d
dx

(x  sin x) " x  cos x � sin x

Now integrate both sides. This has the effect of ‘undoing’ the differentiation, so

        x  sin x " µ  x  cos x dx � µ  sin x dx

Rearranging this gives

µ  x  cos x dx " x  sin x � µ  sin x dx

             " x  sin x � (�cos x) � c

             " x  sin x � cos x � c

This has enabled you to find the integral of x  cos x.

The work in this example can be generalised into the method of integration by 
parts. Before coming on to that, do the following activity.

ACTIVITY 8.2 For each of the following

(a) differentiate using the product rule
(b) rearrange your expression to find an expression for the given integral I
(c) use this expression to find the given integral.

(i) y " x  cos x I " µ  x  sin x dx

(ii) y " xe2x  I " µ  2x e2x dx

●? The work in Activity 8.2 has enabled you to work out some integrals which you 
could not previously have done, but you needed to be given the expressions to be 
differentiated first. Effectively you were given the answers.

 Look at the expressions you found in part (b) of Activity 8.2. 
Can you see any way of working out these expressions without starting by 
differentiating a given product?
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The general result for integration by parts

The method just investigated can be generalised.

Look back at Example 8.14. Use u to stand for the function x , and v to stand for 
the function sin x.

Using the product rule to differentiate the function uv ,

d
dx

(uv) " v d
d

u
x  � ud

d
v
x .   

Integrating gives

uv " µ  v
d
d

u
x  dx � µ  u

d
d

v
x  dx.

Rearranging gives

µ  u
d
d

v
x  dx "  uv � µ  v

d
d

u
x  dx.

This is the formula you use when you need to integrate by parts.

In order to use it, you have to split the function you want to integrate into two 
simpler functions. In Example 8.15 you split x  cos x into the two functions 

x and cos x. One of these functions will be called u and the other d
d

v
x , to fit the 

left-hand side of the expression. You will need to decide which will be which. 
Two considerations will help you.

 ● As you want to use d
d

u
x  

on the right-hand side of the expression, u should be a 

 function which becomes a simpler function after differentiation. So in this 
 case, u will be the function x.

 ● As you need v to work out the right-hand side of the expression, it must be 

 possible to integrate the function dd
v
x �

to obtain v. In this case, d
d

v
x �

will be the 
 function cos x.

So now you can find µx  cos x dx.

Put u " x ¡ d
d

u
x  " 1

and d
d

v
x  

" cos x ¡ v " sin x

Substituting in

µud
d

v
x  

dx " uv � µv d
d

u
x  

dx

gives

µx cos x dx " x  sin x � µ1 w sin x dx

 " x  sin x � (�cos x) � c

 " x  sin x � cos x � c
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EXAMPLE 8.16 Find µ2x  ex dx.

SOLUTION

First split 2x ex into the two simpler expressions, 2x and ex. Both can be integrated 
easily but, as 2x becomes a simpler expression after differentiation and ex does 
not, take u to be 2x.

u " 2x ¡     d
d

u
x  

" 2
d
d

v
x  

" ex ¡     v " ex

Substituting in

µu d
d

v
x  dx " uv � µv d

d
u
x  

dx

gives

µ2x ex dx  " 2x ex � µ2ex dx

             " 2x ex � 2ex � c

In some cases, the choices of u and v may be less obvious.

EXAMPLE 8.17 Find µx  ln x dx.

SOLUTION

It might seem at first that u should be taken as x , because it becomes a simpler 
expression after differentiation.

u " x    ¡    d
d

u
x  " 1

d
d

v
x  " ln x

Now you need to integrate ln x to obtain v. Although it is possible to integrate 
ln x , it has to be done by parts, as you will see in the next example. The wrong 
choice has been made for u and v, resulting in a more complicated integral. 

So instead, let u " ln x.

u " ln x    ¡    d
d

u
x x

" 1

d
d

v
x  " x    ¡    v " 

1
2 x2

Substituting in

µu d
d

v
x  dx " uv � µv d

d
u
x  dx

gives

µx  ln x dx " 
1
2 x2 ln x � µ

1
2

2x

x
 dx

                                     

        " 
1
2 x2 ln x � µ 1

2 x dx

        " 
1
2 x2 ln x � 

1
4 x2 � c
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EXAMPLE 8.18 Find µ  ln x dx.

SOLUTION

You need to start by writing ln x as 1 ln x and then use integration by parts.

As in the last example, let u " ln x.

u " ln x    ¡    d
d

u
x x

" 1

d
d

v
x   " 1    ¡    v " x

Substituting in

µu d
d

v
x  dx " uv  � µv d

d
u
x  

dx

gives

µ1 ln x dx " x ln x � µx w

 

1
x

   

dx

             " x �ln x � µ  l  dx
             " x  ln x � x � c

Using integration by parts twice

Sometimes it is necessary to use integration by parts twice or more to complete 
the integration successfully.

EXAMPLE 8.19 Find µx2 sin x dx.

SOLUTION

First split x2 sin x into two: x2 and sin x. As x2 becomes a simpler expression after 
differentiation, take u to be x2.

u " x2        ¡    d
d

u
x  " 2x

d
d

v
x  " sin x    ¡    v " �cos x

Substituting in

  µu d
d

v
x  dx " uv � µv d

d
u
x  dx

gives

µx2 sin x dx " �x2 cos x � µ�2x  cos x dx

             " �x2 cos x � µ2x  cos x dx          !1  
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Now the integral of 2x cos x cannot be found without using integration by parts 
again. It has to be split into the expressions 2x and cos x  and, as 2x becomes a 
simpler expression after differentiation, take u to be 2x.

u " 2x        ¡    d
d

u
x  " 2

d
d

v
x �

" cos x    ¡    v " sin x

Substituting in

   µu d
d

v
x dx " uv � µv d

d
u
x  dx

gives

 µ2x  cos x dx " 2x  sin x � µ2 sin x dx

            " 2x  sin x � (�2 cos x) � c

            " 2x  sin x � 2 cos x � c

So in !1   µx2 sin x dx " �x2 cos x � 2x sin x � 2 cos x � c.

The technique of integration by parts is usually used when the two functions are of 
different types: polynomials, trigonometrical functions, exponentials, logarithms. 
There are, however, some exceptions, as in questions 3 and 4 of Exercise 8E.

Integration by parts is a very important technique which is needed in many other 
branches of mathematics. For example, integrals of the form µ x f(x) dx are used 
in statistics to find the mean of a probability density function, and in mechanics 
to find the centre of mass of a shape. Integrals of the form µ x2 f(x) dx are used in 
statistics to find variance and in mechanics to find moments of inertia.

EXERCISE 8E 1   For each of these integrals

(a) write down the expression to be taken as u and the expression to be taken  

as d
d

v
x

(b) use the formula for integration by parts to complete the integration.

(i) µx  ex dx (ii) µx  cos 3x dx

(iii) µ(2x � 1)cos x dx (iv) µx  e�2x dx

(v) µx  e�x dx (vi) µx  sin 2x dx

2 Use integraton by parts to integrate 

(i) x3 ln x (ii) 3x e3x

(iii) 2x cos 2x (iv) x2 ln 2x

3 Find µx 1 � x  dx

(i) by using integration by parts 

(ii) by using the substitution u " 1 � x.
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4 Find µ2x(x � 2)4 dx

(i) by using integration by parts

(ii) by using the substitution u " x � 2.

5 (i) By writing ln x as the product of ln x and 1, use integration by parts to find

µ ln x dx.

(ii) Use the same method to find µ ln 3x dx.

(iii) Write down µ ln px dx where p " 0.

6 Find µx2 ex dx.

7 Find µ(2 � x)2 cos x dx.

Definite integration by parts

When you use the method of integration by parts on a definite integral, it is 
important to remember that the term uv on the right-hand side of the expression 
has already been integrated and so should be written in square brackets with the 
limits indicated.

                             
b
            

µ b

a
 u d

d
v
x  dx " [uv]   � µ b

a
 v d

d
u
x  dx

                             a            

EXAMPLE 8.20 Evaluate µ2

0
 x ex dx.

SOLUTION

Put u " x ¡ d
d

u
x  " 1

and d
d

v
x  " ex ¡ v " ex

Substituting in

                             b           µ b

a
 u d

d
v
x  

dx " [uv]   � µ b

a
 v d

d
u
x  

dx
                             a           

gives

µ 2

0
x ex dx " [x ex]2

0
 � µ 2

0
ex dx

 " [x ex]2

0
 � [ex]2

0
  

 " (2e2 � 0) � (e2 � e0)

 " 2e2 � e2 � 1

 " e2 � 1
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EXAMPLE 8.21 Find the area of the region between the curve y " x cos x and the x axis, between    
x " 0 and x " π

2
. 

SOLUTION

Figure 8.6 shows the region whose area 
is to be found.

To find the required area, you 
need to integrate the function 

x cos x between the limits 0 and π
2

.

You therefore need to work out 

µ
π
2

0 
x cos x dx.

Put u " x ¡ d
d

u
x  

" 1

and d
d

v
x  " cos x ¡ v " sin x

Substituting in

                                             
 µ b

a
 u d

d
v
x  dx " [uv]b

a 
� µ

b

a
 v d

d
u
x  

dx.
                                            

gives

 µ
π
2

0 
x  cos x dx " [x  sin x]

π
2

0
 � µ

π
2

0  
sin x dx

  " [x  sin x]
π
2

0
  � [�cos x] �π

2

0

  " [x  sin x � cos x] �π
2

0

  " (π
2  

� 0) � (0 � 1)
  " π

2  
� 1

So the required area is π
2

1−( ) �square units.

EXERCISE 8F 1  Evaluate these definite integrals.

(i) µ1

0 
x e3x dx (ii) µπ

0 
(x � 1)cos x dx

(iii) µ2

0 
(x � 1)ex dx (iv) µ2

1 
ln 2x dx

(v) µ
π
2

0 
x  sin 2x dx (vi) µ4

1 
x2 lnx dx

O

1

–1

U
2

y

x

Figure 8.6
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2 (i) Find the co-ordinates of the points where the graph of y " (2 � x)e�x cuts   
the x and y axes.

(ii) Hence sketch the graph of y " (2 � x)e�x.

(iii) Use integration by parts to find the area of the region between the x axis, 
the y axis and the graph y " (2 � x)e�x.

3 (i) Sketch the graph of y " x sin x from x " 0 to x " π and shade the region   
between the curve and the x axis. 

(ii) Find the area of this region using integration by parts.

4 Find the area of the region between the x axis, the line x " 5 and the graph 
y " ln x.

5 Find the area of the region between the x axis and the graph y " x  cos x from  
x  " 0 to x " π

2
.

6 Find the area of the region between the negative x axis and the graph 
y " x x � 1

(i) using integration by parts

(ii) using the substitution u " x � 1.

7  The sketch shows the curve with equation y " x2 ln 2x.

 Find the x co-ordinate of the point where the curve cuts the x axis. 
Hence calculate the area of the shaded region using the method of integration by 
parts applied to the product of  ln 2x and x2. 
Give your answer correct to 3 decimal places.

 [MEI]

8 Show that µ1

0 
x2ex dx " e � 2.

 Show that the use of the trapezium rule with five strips (six ordinates) gives an 
estimate that is about 3.8% too high.  
Explain why approximate evaluation of this integral using the trapezium rule 
will always result in an overestimate, however many strips are used.

 [MEI]

y = x2 ln2x

O

y

xx = 1
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9 (i) Find µ  x  cos kx  dx, where k is a non-zero constant.

(ii) Show that 

cos(A � B) � cos(A � B) " 2 sin A sin B.

 Hence express 2 sin 5x sin 3x as the difference of two cosines.

(iii) Use the results in parts (i) and (ii) to show that

      x x x xsin sin .5 3 2
160

4 d = −∫ ππ

 [MEI]

10 Use integration by parts to show that

ln d lnx x =∫ 6 2 2
2

4
– .

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 November 2007]

11 The constant a is such that x x
a xe d

1
2

0
6∫ = .  

(i) Show that a satisfies the equation

x x= +2
1
2e– .

(ii) By sketching a suitable pair of graphs, show that this equation has only 
one root.

(iii) Verify by calculation that this root lies between 2 and 2.5.

(iv) Use an iterative formula based on the equation in part (i) to calculate the 
value of a correct to 2 decimal places. Give the result of each iteration to 
4 decimal places.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 November 2008]

12 The diagram shows the curve y " e–1
2
x �(1 + 2x) and its maximum point M. 

The shaded region between the curve and the axes is denoted by R.

(i) Find the x co-ordinate of M.

(ii) Find by integration the volume of the solid obtained when R is rotated 
completely about the x axis. Give your answer in terms of U and e.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2008]

M

R

O

y

x
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General integration

You now know several techniques for integration which can be used to integrate 
a wide variety of functions. One of the difficulties which you may now experience 
when faced with an integration is deciding which technique is appropriate! This 
section gives you some guidelines on this, as well as revising all the work on 
integration that you have done so far.

●? Look at the integrals below and try to decide which technique you would use 
and, in the case of a substitution, which expression you would write as u. Do not 
attempt actually to carry out the integrations. Make a note of your decisions − 
you will return to these integrals later.

 (i) µ x
x x

−
+ −

5
2 32  dx (ii) µ x

x x
+

+ −
1

2 32  dx

 (iii) µx ex dx (iv) µx ex 2 dx

 (v) µ 2
2
x x

x x
�
�

cos
sin  

dx (vi) µcos x  sin2 x dx

Choosing an appropriate method of integration

You have now met the following standard integrals.

If you are asked to integrate any of these standard functions, you may simply 
write down the answer.

For other integrations, the following table may help.

 f(x)  µf(x) dx

  xn�+
 

1
 xn     (n |  –1) ––––         n + 1

 1 –            (x |�0) ln� a x  a  x

 ex               (x ! ") ex

 sin x      (x ! ") –cos x

 cos x   (x ! ") sin x
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 Type of expression to be integrated Examples Method of integration

 Simple variations of any of the cos(2x � 1) Substitution may be used, but it should 

 standard functions e3x be possible to do these by inspection.

 Product of two expressions of the 2x ex2 Substitution u " f(x)

 form f'(x)g[f(x)]
  

x2(x3 � 1)6

 Note that f'(x) means 
d��
dx

[f(x)]
      

 Other products, particularly x ex Integration by parts

 when one expression is a small  x2sin x
 positive integer power of x

 or a polynomial in x

                                         f'(x)     x Substitution u " f(x) or by inspection: Quotients of the form ����  ����   
                                          f(x) x2 � 1     k ln a f(x) a � c,
 or expressions which can easily  sin x 

where k is known  ����
 be converted to this form cos x 

 Polynomial quotients which   x � 1 Split into partial fractions and integrate
  ������
 may be split into partial fractions x(x � 1) term by term 

      x � 4
  ��������
  x2 � x � 2

 Odd powers of sin x or cos x cos3 x Use cos2 x � sin2 x " 1 and write   

   in form f'(x)g[f(x)]

Even powers of sin x or cos x sin2 x Use the double-angle formulae to  
  cos4 x transform the expression before
   integrating.

It is impossible to give an exhaustive list of possible types of integration, but the 
table above and that on the previous page cover the most common situations that 
you will meet.

ACTIVITY 8.3  Now look back at the integrals in the discussion point on the previous page and 
the decisions you made about which method of integration should be used for 
each one. Now find these integrals.

 (i) µ x
x x

−
+ −

5
2 32  dx (ii) µ x

x x
+

+ −
1

2 32  dx

 (iii) µx ex dx (iv) µx ex 2 dx

 (v) µ 2
2
x x

x x
�
�

cos
sin  

dx (vi) µcos x  sin2 x dx
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EXERCISE 8G  1  Choose an appropriate method and integrate the following. 

You may find it helpful to discuss in class first which method to use.

(i) µcos(3x � 1) dx (ii) µ 2 1
12 2

x
x x

+
+ −( )  dx

(iii) µe1�x dx (iv) µcos 2x dx

(v) µ ln 2x dx (vi) µ x
x( )2 31�  dx

(vii) µ 2 3x �  dx (viii) µ 4 1
1 22
x

x x
−

− +( ) ( )  dx

(ix) µx3 ln x dx (x) µ 5
2 7 32x x− +  dx

(xi) µ(x � 1)ex 2�2x dx (xii) µ sin cos
sin cos

x x
x x
−
+ dx

(xiii) µx2 sin 2x dx (xiv) µsin3 2x dx

2 Evaluate the following definite integrals.

(i) µ 24

8
   

dx

x3 8�
 (ii) µ 24

8
   

dx
x3 8�       (iii) µ 24

8
   

9
3 8

x
x �  dx

(iv) µ
π
2

0
 sin3x dx (v) µ 2

1 
x2 ln x dx

3 Evaluate µ
2

0
 

x

x

2

31 �
 dx , using the substitution u " 1 � x3, or otherwise.

[MEI]

4 Find µ
π
2

0
 sin
cos

θ
θ4  dθ in terms of 2 .

 [MEI]

5 Using the substitution u " ln x , or otherwise, find µ
2

1
 
lnx

x dx , giving your 
                                                                                             
 answer to 2 decimal places.

[MEI, part]

6 Find µ
π
2

0
  x cos 2x dx, expressing your answer in terms of π.

[MEI]

7 (i) Find µx e�2x dx.

(ii) Evaluate µ 1

0
 

x
x( )4 2�  dx , giving your answer correct to 3 significant figures.

[MEI]

8 (i) Find µsin(2x � 3) dx.

(ii) Use the method of integration by parts to evaluate µ
2

0 
x e2x dx.

(iii) Using the substitution t " x2 � 9, or otherwise, find µ x
x2 9�  dx.

[MEI]
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9 Evaluate

(i) µ 1

0 
(2x2 � 1)(2x3 � 3x � 4)

1
2 dx

(ii) µ
e

1
  

lnx
x3  dx.

[MEI] 

10 Find µ
π
2

0
 sin x  cos3 x dx and µ 1

0 
te�2t dt.

[MEI]

KEY POINTS

1  µkx n dx " kx
n

n�

�
1

1
� c where k and n are constants but n  | �1.   

2 Substitution is often used to change a non-standard integral into a           
standard one.

3 µex dx " ex � c 

µe d eax b ax bx
a

c+ += +1

4  µ  1x  dx " ln a x a�� c

µ  1 1
ax b

x
a+ =d

 
ln a ax � b a�� c

5  µ  f '( )
f( )

x
x  dx " ln a f(x) a � c

6 µ  cos( ) sin( )ax b x
a

ax b c+ = + +d 1

µ  sin( ) cos( )ax b x
a

ax b c+ = − + +d 1

µ  sec ( ) tan( )2 1ax b x
a

ax b c+ = + +d

7 Using partial fractions often makes it possible to use logarithms to integrate 
the quotient of two polynomials.

8 Some products may be integrated by parts using the formulae

µu d
d

v
x  dx " uv � µv d

d
u
x  dx

                            

µ
b

a
u v

x
x uv

a
bd

d
d = [ ] −

 µ
b

a 
v u

x
xd

d
d .
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Differential equations

The greater our knowledge increases, the more our ignorance unfolds.
John F. Kennedy

Suppose you are in a hurry to go out and want to 
drink a cup of hot tea before you go. 

How long will you have to wait until it is cool 
enough to drink?

To solve this problem, you would need to know 
something about the rate at which liquids cool at 
different temperatures. 

Figure 9.1 shows an example of the temperature 
of a liquid plotted against time.

Notice that the graph is steepest at high temperatures and becomes less steep as 
the liquid cools. In other words, the rate of change of temperature is numerically 
greatest at high temperatures and gets numerically less as the temperature drops. 
The rate of change is always negative since the temperature is decreasing.

If you study physics, you may have come across Newton’s law of cooling: The 
rate of cooling of a body is proportional to the difference in temperature of the 
body and that of the surrounding air.

The gradient of the temperature graph may be written as 
d
d

θ
t , where θ is the 

temperature of the liquid and t is the time. The quantity 
d
d

θ
t  tells us the rate at 

which the temperature of the liquid is increasing. As the liquid is cooling, 
d
d

θ
t  will 

be negative, so the rate of cooling may be written as – 
d
d

θ
t

.

time W �sec�

te
m

Se
ra

tX
re

 θ
 ��

C
�

Figure 9.1 

9
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The difference in temperature of the liquid and that of the surrounding air 
may be written as θ – θ0, where θ0 is the temperature of the surrounding air. So 
Newton’s law of cooling may be expressed mathematically as:

–d
d

θ
t

 ! (θ – θ0)

or        d
d

θ
t

 " –k(θ – θ0)

where k is a positive constant.

Any equation, like this one, which involves a derivative, such as 
d
d

θ
t

, 
d
d

y
x

 or 
d
d

2

2
y

x
 ,  

is known as a differential equation. A differential equation which only involves a 

first derivative such as 
d
d

y
x  is called a first-order differential equation. One which 

involves a second derivative such as 
d
d

2

2
y

x
 is called a second-order differential 

equation. A third-order differential equation involves a third derivative and 
so on. 

In this chapter, you will be looking only at first-order differential equations such 
as the one above for Newton’s law of cooling.

By the end of this chapter, you will be able to solve problems such as the tea 
cooling problem given at the beginning of this chapter, by using first-order 
differential equations.

Forming differential equations from rates of change

If you are given sufficient information about the rate of change of a quantity, 
such as temperature or velocity, you can work out a differential equation 
to model the situation, like the one above for Newton’s law of cooling. It is 
important to look carefully at the wording of the problem which you are studying 
in order to write an equivalent mathematical statement. For example, if the 
altitude of an aircraft is being considered, the phrase ‘the rate of change of height’ 
might be used. This actually means ‘the rate of change of height with respect to 

time’ and could be written as 
d
d

h
t . However, you might be more interested in how

the height of the aircraft changes according to the horizontal distance it has 
travelled. In this case, you would talk about ‘the rate of change of height with 

respect to horizontal distance’ and could write this as 
d
d

h
x , where x is the horizontal 

distance travelled.

Some of the situations you meet in this chapter involve motion along a straight 
line, and so you will need to know the meanings of the associated terms.

The position of an object (+5 in figure 9.2, overleaf) is its distance from the 
origin O in the direction you have chosen to define as being positive.
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The rate of change of position of the object with respect to time is its velocity, 
and this can take positive or negative values according to whether the object is 
moving away from the origin or towards it.

v s
t

" d
d

The rate of change of an object’s velocity with respect to time is called its 
acceleration, a.

a v
t

" d
d

Velocity and acceleration are vector quantities but in one-dimensional motion 
there is no choice in direction, only in sense (i.e. whether positive or negative). 
Consequently, as you may already have noticed, the conventional bold type for 
vectors is not used in this chapter.

EXAMPLE 9.1 An object is moving through a liquid so that the rate at which its velocity 
decreases is proportional to its velocity at any given instant. When it enters the 
liquid, it has a velocity of 5 m s–1 and the velocity is decreasing at a rate of 1 m s–2. 
Find the differential equation to model this situation.

SOLUTION

The rate of change of velocity means the rate of change of velocity with respect to 

time and so can be written as d
d

v
t

. As it is decreasing, the rate of change must be 

negative, so

�d
d

v
t  ! v

or      d
d

v
t

kv= −

where k is a positive constant.

When the object enters the liquid its velocity is 5 m s–1, so v " 5, and the velocity 
is decreasing at the rate of 1 m s–2, so

d
d

v
t
= −1

Putting this information into the equation d
d

v
t

kv= −  gives

 –1 " –k w 5      ¡      k " 15.

So the situation is modelled by the differential equation

d
d

v
t

v= −
5

�

2

1 2 3 � � � V±1

Figure 9.2 



Fo
rm

in
g

 d
ifferen

tial eq
u

atio
n

s fro
m

 rates o
f ch

an
g

e

211

P3 

9

EXAMPLE 9.2 A model is proposed for the temperature gradient within a star, in which the 
temperature decreases with respect to the distance from the centre of the star at a 
rate which is inversely proportional to the square of the distance from the centre. 
Express this model as a differential equation.

SOLUTION 

In this example the rate of change of temperature is not with respect to time but 
with respect to distance. If θ represents the temperature at a point in the star and 
r the distance from the centre of the star, the rate of change of temperature with 

respect to distance may be written as – d
d

θ
r

, so 

       ! − = −d
d

or d
d

θ θ
r r r

k
r

1
2 2

where k is a positive constant.

Note

This model must break down near the centre of the star, otherwise it would be 

infinitely hot there.

EXAMPLE 9.3 The area A of a square is increasing at a rate proportional to the length of its 

side s. The constant of proportionality is k. Find an expression for d
d

s
t
.

SOLUTION

The rate of increase of A with respect to time may be written as d
d
A
t

. 

As this is proportional to s, it may be written as

d
d
A
t

ks"

where k is a positive constant.

You can use the chain rule to write down an expression for d
d

s
t

 in terms of  d
d
A
t

.

d
d

d
d

d
d

s
t

s
A

A
t

= ×

$V V

V

V

Figure 9.3 
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You now need an expression for  d
d

d
d

d
d

s
t

s
A

A
t

= ×. Because A is a square

   A " s2

¡ d
d
A
s
  " 2s

¡ d
d

s
A

 " 1
2s

 

Substituting the expressions for d
d

s
A

 and d
d
A
t

  into the expression for d
d

s
t
 

¡ d
d

s
t
 " 1

2s
  w ks

¡� d
d

s
t

k" 1
2

EXERCISE 9A 1  The differential equation

d
d

v
t

v" 5 2

 models the motion of a particle, where v is the velocity of the particle in m s–1 

 and t is the time in seconds. Explain the meaning of  d
d

v
t

 and what the 

 differential equation tells you about the motion of the particle.

2 A spark from a firework is moving in a straight line at a speed which is 
inversely proportional to the square of the distance which the spark has 
travelled from the firework. Find an expression for the speed (i.e. the rate of 
change of distance travelled) of the spark.

3 The rate at which a sunflower increases in height is proportional to the natural 
logarithm of the difference between its final height H and its height h at a 
particular time. Find a differential equation to model this situation.

4 In a chemical reaction in which substance A is converted into substance B, the 
rate of increase of the mass of substance B is inversely proportional to the mass 
of substance B present. Find a differential equation to model this situation.

5 After a major advertising campaign, an engineering company finds that its 
profits are increasing at a rate proportional to the square root of the profits at 
any given time. Find an expression to model this situation.

6 The coefficient of restitution e of a squash ball increases with respect to the 
ball’s temperature θ at a rate proportional to the temperature, for typical 
playing temperatures. (The coefficient of restitution is a measure of how 
elastic, or bouncy, the ball is. Its value lies between zero and one, zero meaning 
that the ball is not at all elastic and one meaning that it is perfectly elastic.) 
Find a differential equation to model this situation.
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7 A cup of tea cools at a rate proportional to the temperature of the tea above 
that of the surrounding air. Initially, the tea is at a temperature of 95°C and is 
cooling at a rate of 0.5°C s–1. The surrounding air is at 15°C. 
Find a differential equation to model this situation.

8 The rate of increase of bacteria is modelled as being proportional to the 
number of bacteria at any time during their initial growth phase.

 When the bacteria number 2 w 106 they are increasing at a rate of 105 per day. 
Find a differential equation to model this situation.

9 The acceleration (i.e. the rate of change of velocity) of a moving object under 
a particular force is inversely proportional to the square root of its velocity. 
When the speed is 4 m s–1 the acceleration is 2 m s–2. Find a differential 
equation to model this situation.

10 The radius of a circular patch of oil is increasing at a rate inversely proportional 

 to its area A. Find an expression for d
d
A
t

.

11 A poker, 80 cm long, has one end in a fire. The temperature of the poker 
decreases with respect to the distance from that end at a rate proportional to 
that distance. Halfway along the poker, the temperature is decreasing at a rate 
of 10°C cm–1. Find a differential equation to model this situation.

12 A spherical balloon is allowed to deflate. The rate at which air is leaving the 
balloon is proportional to the volume V of air left in the balloon. When the 
radius of the balloon is 15 cm, air is leaving at a rate of 8 cm3 s–1. 

 Find an expression for d
d
V
t

.

13 A tank is shaped as a cuboid with a square base of side 10 cm. Water runs 
out through a hole in the base at a rate proportional to the square root of the 
height, h cm, of water in the tank. At the same time, water is pumped into the 

 tank at a constant rate of 2 cm3
 s–1. Find an expression for  d

d
h
t

.
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INVESTIGATION

Figure 9.4 shows the isobars (lines of equal pressure) on a weather map featuring 
a storm. The wind direction is almost parallel to the isobars and its speed is 
proportional to the pressure gradient.

Draw a line from the point H to the point L. This runs approximately 
perpendicular to the isobars. It is suggested that along this line the pressure 
gradient (and so the wind speed) may be modelled by the differential equation

d
d

p
x

 " –a sin bx

Suggest values for a and b, and comment on the suitability of this model.

Solving differential equations

The general solution of a differential equation

Finding an expression for f(x) from a differential equation involving derivatives 
of f(x) is called solving the equation. 

Some differential equations may be solved simply by integration.

EXAMPLE 9.4 Solve the differential equation 
d
d

y
x  " 3x2 – 2.

SOLUTION

Integrating gives

 y " µ  (3x2 – 2) dx

 y " x3 – 2x + c

Scale RI QaXtical miles
1�����

���

3��

���

���

1��

��

1�
�

2�
�

3�
�

��� ���

2�� ��� ���

���

���

Figure 9.4 
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Notice that when you solve a differential equation, you get not just one solution, 

but a whole family of solutions, as c can take any value. This is called the general 

solution of the differential equation. The family of solutions for the differential 

equation in the example above would be translations in the y direction of the 

curve y " x3 – 2x. Graphs of members of the family of curves can be found in 

figure 9.5 on page 217.

The method of separation of variables 

It is not difficult to solve a differential equation like the one in Example 9.4, 
because the right-hand side is a function of x only. So long as the function can be 
integrated, the equation can be solved. 

Now look at the differential equation 
d
d

y
x  " xy.

This cannot be solved directly by integration, because the right-hand side is a 
function of both x and y. However, as you will see in the next example, you can 
solve this and similar differential equations where the right-hand side consists of 
a function of x and a function of y multiplied together.

EXAMPLE 9.5 Find, for y " 0, the general solution of the differential equation 
d
d

y
x

 " xy.

SOLUTION

The equation may be rewritten as

1
y

y
x

d
d

 " x

so that the right-hand side is now a function of x only.

Integrating both sides with respect to x gives

     
1
y

y
x

x x xd
d

d d∫ ∫=  

As 
d
d

y
x  dx can be written as dy

          
1
y

y x xd d∫ ∫=  

Both sides may now be integrated separately.

            ln a y a " 12 x2 + c

 ●?  Explain why there is no need to put a constant of integration on both sides 
of the equation.

Since you have been told  
y " 0, you may drop the modulus 

symbol. In this case, a y a " y.
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You now need to rearrange the solution above to give y in terms of x . Making 
both sides powers of e gives

elny " e
1
2 x 2+c

¡ y " e
1
2 x 2+c

¡ y " e
1
2 x 2

ec

This expression can be simplified by replacing ec with a new constant A.

  y " Ae
1
2x 2

Note

Usually the first part of this process is carried out in just one step.

d
d

y
x

xy"

can immediately be rewritten as

1
y

y x xd d∫ ∫=

This method is called separation of variables. It can be helpful to do this by

thinking of the differential equation as though 
d
d

y
x

 were a fraction and trying to 

rearrange the equation to obtain all the x terms on one side and all the y terms 
on the other. Then just insert an integration sign on each side. Remember that  
dy and dx must both end up in the numerator (top line).

EXAMPLE 9.6 Find the general solution of the differential equation 
d
d

y
x  " e–y.

SOLUTION

Separating the variables gives

1
e

d d−∫ ∫=y y x

¡� e d dy y x∫ ∫=
The right-hand side can be thought of as integrating 1 with respect to x.

        ey " x + c

Taking logarithms of both sides gives 

          y " ln²x + c²

!  ln²x + c² is not the same as ln ²x ²+ c.

Notice that the right-hand 
side is e

1–2x2+c

and not e
1–2x2 + ec.
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EXERCISE 9B 1  Solve the following differential equations by integration.

(i) 
d
d

y
x

 " x2 (ii) 
d
d

y
x

  " cos x

(iii) 
d
d

y
x

 " ex (iv) 
d
d

y
x

x"

2 Find the general solutions of the following differential equations by separating 
the variables.

(i) 
d
d

y
x

 " xy2 (ii) 
d
d

y
x

x
y

"
2

 

(iii) 
d
d

y
x

 " y (iv) 
d
d

e
y
x

x y= −

(v) 
d
d

y
x

y
x

"  (vi) 
d
d

y
x

x y"

(vii) 
d
d

y
x

 " y2
 cos x (viii) d

d
y
x

x y
y x

= +
+

( )
( )

2

2
1
1

 

(ix) 
d
d

y
x

 " x ey (x) 
d
d

y
x

x x
y

" ln
2

The particular solution of a differential equation

You have already seen that a differential equation has an infinite number of 
different solutions corresponding to different values of the constant of 

integration. In Example 9.4, you found that 
d
d

y
x

 " 3x2 – 2 had a general solution 

of y " x3 – 2x + c.

Figure 9.5 shows the curves of the solutions corresponding to some different 
values of c.

0
2 31–1

6

–6

–2–3 x

y

y = x3 – 2x + 2 (c = 2)

y = x3 – 2x (c = 0)

y = x3 – 2x – 1 (c = –1)

Figure 9.5 
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If you are given some more information, you can find out which of the possible 
solutions is the one that matches the situation in question. For example, you 
might be told that when x " 1, y " 0. This tells you that the correct solution is 
the one with the curve that passes through the point (1, 0). You can use this 
information to find out the value of c for this particular solution by substituting 
the values x " 1 and y " 0 into the general solution.

 y " x3 – 2x + c

 0 " 1 – 2 + c

¡ c " 1

So the solution in this case is y " x3 – 2x + 1. 

This is called the particular solution.

EXAMPLE 9.7 (i) Find the general solution of the differential equation 
d
d

y
x  " y2.

(ii) Find the particular solution for which y " 1 when x " 0.

SOLUTION

(i) Separating the variables gives 1
2y

y xd d∫ ∫=

      – 1
y

 " x + c

The general solution is y " – 1
x c�

.

Figure 9.6 shows a set of solution curves.

0 21–1

3

2

1

–3

–2

–1

–2–3 x

y
y = – (c = 1)1

x + 1

–4

y = – (c = –1)1
x – 1

y = – (c = 0)1
x

Figure 9.6 
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(ii) When x " 0, y " 1, which gives

1 "  – 1
c

 ¡ c " –1.

So the particular solution is

y " – 1
1x �  or y "�� 1

1 � x

This is the blue curve illustrated in figure 9.6.

EXAMPLE 9.8 The acceleration of an object is inversely proportional to its velocity at any given 
time and the direction of motion is taken to be positive.  
When the velocity is 1 m s–1, the acceleration is 3 m s–2.

(i) Find a differential equation to model this situation.
(ii) Find the particular solution to this differential equation for which the initial 

velocity is 2 m s–1.
(iii) In this case, how long does the object take to reach a velocity of 8 m s–1?

SOLUTION

(i) d
d

v
t

k
v

"

When v " 1, d
d

v
t

 " 3 so k " 3, which gives dd
v
t v

" 3
 .

(ii) Separating the variables:

v v td d∫ ∫= 3

 1
2v2 " 3t + c

When t " 0, v " 2 so c " 2, which gives

 1
2v2 " 3t + 2

 v2 " 6t + 4

Since the direction of motion is positive

 v " 6 4t �

(iii) When v " 8 64 " 6t + 4
 60 " 6t ¡ t " 10

The object takes 10 seconds to reach a velocity of 8 m s�1.
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The graph of the particular solution is shown in figure 9.7.

Sometimes you will be asked to verify the solution of a differential equation. In 
that case you are expected to do two things:

 ● substitute the solution in the differential equation and show that it works

 ● show that the solution fits the conditions you have been given.

EXAMPLE 9.9 Show that sin y " x is a solution of the differential equation

d
d

y
x x
=

−
1

1 2  

given that y " 0 when x " 0.

SOLUTION

 sin y " x

¡ cos y 
d
d

y
x

 " 1

¡                   
d
d

y
x y

" 1
cos  

Substituting into the differential equation 
d
d

y
x x
=

−
1

1 2  :

LHS:

RHS:

1

1
1

1
1

1
2 2

cos

– – sin cos

y

x y y
" "  

So the solution fits the differential equation.

Substituting x " 0 into the solution sin y " x gives sin y " 0 and this is satisfied by 
y " 0.

So the solution also fits the particular conditions.

O

2

t

v

v =   6t  + 4

Figure 9.7

The remainder of the curve 
for t # 0 and ν # 2 is not  
shown as it is not relevant       

to the situation.
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EXERCISE 9C 1  Find the particular solution of each of the following differential equations.

(i) 
d
d

y
x

 " x2 – 1 y " 2 when x " 3

(ii) 
d
d

y
x

 " x2y y " 1 when x " 0

(iii) 
d
d

y
x

 " x e–y y " 0 when x " 0

(iv) 
d
d

y
x

 " y2 y " 1 when x " 1

(v) 
d
d

y
x

 " x(y + 1) y " 0 when x " 1

(vi) 
d
d

y
x

 " y2
 sin x y " 1 when x " 0

2 A cold liquid at temperature θ °C, where θ < 20, is standing in a warm room. 
The temperature of the liquid obeys the differential equation

d
d

θ
t  " 2(20 – θ)

 where the time t is measured in hours.
(i) Find the general solution of this differential equation.

(ii) Find the particular solution for which θ " 5 when t " 0.

(iii) In this case, how long does the liquid take to reach a temperature of 18°C?

3 A population of rabbits increases so that the number of rabbits N (in 
hundreds), after t years is modelled by the differential equation

d
d
N
t

 " N.

(i) Find the general solution for N in terms of t.

(ii) Find the particular solution for which N " 10 when t " 0.

(iii) What will happen to the number of rabbits when t becomes very large? 
Why is this not a realistic model for an actual population of rabbits?

4 An object is moving so that its velocity v =( )d
d

s
t

 is inversely proportional to its 

 displacement s from a fixed point. 
 If its velocity is 1 m s–1 when its displacement is 2 m, find a differential 

equation to model the situation. 
 Find the general solution of your differential equation.

5 (i) Write 1
3y y( )�  in partial fractions.

(ii) Find 1
3y y( )−∫  

dy.

(iii) Solve the differential equation

x
y
x

d
d

 " y(3 – y)

 where x " 2 when y " 2, giving y as a function of x .
 [MEI]
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6   Given that k is a constant, find the solution of the differential equation

d
d

y
t

 + ky " 2k

 for which y " 3 when t " 0.

 Sketch the graph of y against a kt a, making clear how it behaves for large values 
of a kt  a. 
 [MEI]

7 A colony of bacteria which is initially of size 1500 increases at a rate 
proportional to its size so that, after t hours, its population N satisfies the 

 equation 
d
d
N
t  " kN.

(i) If the size of the colony increases to 3000 in 20 hours, solve the differential 
equation to find N in terms of t.

(ii) What size is the colony when t " 80?

(iii) How long did it take, to the nearest minute, for the population to increase 
from 2000 to 3000?

 [MEI]

8 (i) Show that 
x
x x

2

2 2
1
1

1 2
1

+
−

= +
− .

(ii) Find the partial fractions for 2
1 1( )( )x x− + .

(iii) Solve the differential equation

(x2 – 1)
d
d

y
x

 " –(x2 + 1)y          (where x " 1)

given that y " 1 when x " 3. Express y as a function of x.
 [MEI]

9 A patch of oil pollution in the sea is approximately circular in shape. When 
first seen its radius was 100 m and its radius was increasing at a rate of 0.5 m 
per minute. At a time t minutes later, its radius is r metres. An expert believes 
that, if the patch is untreated, its radius will increase at a rate which is 

 proportional to 
1
2r

.

(i) Write down a differential equation for this situation, using a constant of 

 proportionality, k.

(ii) Using the initial conditions, find the value of k. Hence calculate the 
expert’s prediction of the radius of the oil patch after 2 hours.

The expert thinks that if the oil patch is treated with chemicals then its 

radius will increase at a rate which is proportional to 
1

22r t( )�
.

(iii) Write down a differential equation for this new situation and, using the 
same initial conditions as before, find the value of the new constant of 
proportionality.

(iv) Calculate the expert’s prediction of the radius of the treated oil patch after 
2 hours.

 [MEI]



E
xercise 9

C

223

P3 

9

10 (i) Express 1
2 1( )( )− +x x

 in partial fractions.

 An industrial process creates a chemical C. At time t hours after the start 
of the process the amount of C produced is x kg. The rate at which C is 
produced is given by the differential equation

d
d

x
t  " k(2 – x)(1 + x)e–t,

where k is a constant.
(ii) When t " 0, x " 0 and the rate of production of C is 2

3
 kg per hour. 

Calculate the value of k.

(iii) Show that ln 1
2
+
−( )x

x
 " –e–t + 1 – ln 2, provided that x # 2.

(iv) Find, in hours, the time taken to produce 0.5 kg of C, giving your answer 
correct to 2 decimal places.

(v) Show that there is a finite limit to the amount of C which this process can 
produce, however long it runs, and determine the value of this limit.

 [MEI]

11 (i) Use integration by parts to evaluate µ4x  cos 2x dx.

(ii) Use part (i), together with a suitable expression for cos2x , to show that

µ8x  cos2
 x dx " 2x2 + 2x  sin 2x + cos 2x + c.

(iii) Find the solution of the differential equation

d
d

y
x

x x
y

" 8 2cos

 which satisfies y " 3 when x " 0.

(iv) Show that any point (x , y) on the graph of this solution which satisfies 
sin 2x " 1 also lies on one of the lines y " 2x + 1 or y " –2x – 1.

 [MEI]

12 (i) Express 1
1 1 2

−
+ +

x
x x( )( )

 in the form A
x

Bx C
x1 1 2� � �

�
.

(ii) Hence show that the solution of the differential equation

d
d

y
x

y x
x x

=
+ +

( – )
( )( )

1
1 1 2 ,

 given that y " 1 when x " 0, is

y "� 1

1 2

�
�

x

x
.

(iii) Find the first three terms of the binomial expansion of 1

1 2� x
.

 Hence find a polynomial approximation for y "� 1

1 2

�
�

x

x
 up to the term 

in x5.
 [MEI]
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13 (i) Express 1
3 1( )x x�

 in partial fractions.

  A model for the way in which a population of animals in a closed    
 environment varies with time is given, for P " 13, by

d
d
P
t

" 1
2 (3P 2 – P)sin t

where P is the size of the population in thousands at time t.

(ii) Given that P " 12 when t " 0, use the method of separation of variables to 
show that 

ln 3 1 1
2

P
P
−( )= (1 – cos t).

(iii) Calculate the smallest positive value of t for which P " 1.

(iv) Rearrange the equation at the end of part (ii) to show that

P " 1
3

1
2 1� e ( –cos )t

.

Hence find the two values between which the number of animals in the 
population oscillates.

 [MEI]

14 (i) Use integration by parts to show that

µ ln x dx " x  ln x – x + c.

(ii) Differentiate ln(sin x) with respect to x , for 0 # x # U
2

.

 Hence write down µcot x dx , for 0 # x # U
2

.

(iii) For x " 0 and 0 # y # U
2

, the variables y and x are connected by the  

 differential equation

d
d

y
x

x
y

" ln
cot

,

 and y "�U
6

 when x " e.

 Find the value of y when x " 1, giving your answer correct to 3 significant 
figures.  
Use the differential equation to show that this value of y is a stationary 
value, and determine its nature.

 [MEI]
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15 (i) Using partial fractions, find

µ 1
4y y

y
( )−∫ d .

(ii) Given that y = 1 when x = 0, solve the differential equation

d
d

y
x

y y= −( )4 ,

 obtaining an expression for y in terms of x.

(iii) State what happens to the value of y if x becomes very large and positive.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q8 June 2005]

16 The temperature of a quantity of liquid at time t is θ. The liquid is cooling 
in an atmosphere whose temperature is constant and equal to A. The rate of 
decrease of θ is proportional to the temperature differerence (θ – A). Thus θ 
and t satisfy the differential equation

 
d
d

θ θ
t

k A= − −( ),

 where k is a positive constant.

(i) Find, in any form, the solution of this differential equation, given that 
θ " 4A when t " 0.

(ii) Given also that θ " 3A when t " 1, show that k " ln 32.

(iii) Find θ in terms of A when t " 2, expressing your answer in its simplest 
form.

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q9 November 2009]

17 The variables x and t are related by the differential equation

 
e d

d
2 2t x

t
x" cos ,

 where t ! 0. When t = 0, x = 0.

(i) Solve the differential equation, obtaining an expression for x in terms of t.

(ii) State what happens to the value of x when t becomes very large.

(iii)  Explain why x increases as t increases.

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q7 June 2010]

18 An underground storage tank is being filled with liquid as shown in the 
diagram (overleaf). Initially the tank is empty. At time t hours after filling 
begins, the volume of liquid is V m3 and the depth of liquid is h m. It is given 
that V h" 4

3
3 .

 The liquid is poured in at a rate of 20 m3 per hour, but owing to leakage, 

 liquid is lost at a rate proportional to h2. When h = 1, d
d

h
t

" 4 95. .
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(i) Show that h satisfies the differential equation

 

d
d

h
t h
= −5 1

202
.

(ii) Verify that 20
100

20 2000
10 10

2

2
h

h h h−
≡ − + − +( )( )

.

(iii) Hence solve the differential equation in part (i), obtaining an expression 
for t in terms of h.

 [Cambridge  International AS & A Level Mathematics 9709, Paper 3 Q8 November 2008]

INVESTIGATION

Investigate the tea cooling problem introduced on page 208. You will need 
to make some assumptions about the initial temperature of the tea and the 
temperature of the room.

What difference would it make if you were to add some cold milk to the tea and 
then leave it to cool?

Would it be better to allow the tea to cool first before adding the milk?

KEY POINTS

1 A differential equation is an equation involving derivatives such as

d
d

and
d
d

y
x

y
x

2

2

2 A first-order differential equation involves a first derivative only.

3 Some first-order differential equations may be solved by separating the 
variables.

4 A general solution is one in which the constant of integration is left in the 
solution, and a particular solution is one in which additional information is 
used to calculate the constant of integration.

5 A general solution may be represented by a family of curves, a particular 
solution by a particular member of that family.
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Vectors

By relieving the brain of all unnecessary work, a good notation sets it 
free to concentrate on more advanced problems.

A.N. Whitehead, 1861–1947 

The vector equation of a line

Two-dimensional co-ordinate geometry involves the study of points, given as   
co-ordinates, and lines, given as cartesian equations. The same work may also be 
treated using vectors.

The co-ordinates of a point, say (3, 4), are replaced by its position vector 
3
4
⎛
⎝⎜
⎞
⎠⎟  or 

3i � 4j. The cartesian equation of a line is replaced by its vector form, and this is 
introduced on page 231.

Since most two-dimensional problems are readily solved using the methods of 
cartesian co-ordinate geometry, as introduced in Pure Mathematics 1, Chapter 2, 
why go to the trouble of relearning it all in vectors? The answer is that vector 
methods are very much easier to use in many three-dimensional situations than 
cartesian methods are. In preparation for that, we review some familiar two-
dimensional work in this section, comparing cartesian and vector methods.

The vector joining two points

In figure 10.1, start by looking at two points A(2, �1) and B(4, 3); that is the 

points with position vectors O
�q

A " 2
1−

⎛
⎝⎜

⎞
⎠⎟  and O

�q
B " 4

3
⎛
⎝⎜
⎞
⎠⎟ , alternatively 2i � j and 

4i � 3j.

O 2

A(2, –1)

B(4, 3)

N

M

3 4 51–1

3

2

1

–2

–1

x

y

Figure 10.1 
227

10
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The vector joining A to B is A
�q

B and this is given by

A
�q

B " A
�q

O � O
�q

B 

� "��O
�q

A � O
�q

B     

  " O
�q

B � O
�q

A   

   
= ⎛
⎝⎜
⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟

4
3

2
1

2
4–

Since A
�q

B " 
2
4
⎛
⎝⎜
⎞
⎠⎟ , then it follows that the length of AB is given by

�A
�q

B��" 2 42 2�

  " 20 .

You can find the position vectors of points along AB as follows.

The mid-point, M, has position vector O
�q

M, given by

O
�q

M " O
�q

A �� 12 A
�q

B 

  
= ⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟

2
1

1
2

2
4–

  = ⎛
⎝⎜
⎞
⎠⎟

3
1 .

In the same way, the position vector of the point N, three-quarters of the distance 
from A to B, is given by

O
�q

N = ⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟

2
1

3
4

2
4–

 
=

3
2

1
2

⎛
⎝⎜

⎞
⎠⎟

and it is possible to find the position vector of any other point of subdivision of 
the line AB in the same way.

 ●  A point P has position vector O
�q

P " O
�q

A � λA
�q

B where λ is a fraction.

Show that this can be expressed as 

  O
�q

P " (1 � λ)O
�q

A � λO
�q

B.

The vector equation of a line

It is now a small step to go from finding the position vector of any point on the 
line AB to finding the vector form of the equation of the line AB. To take this 
step, you will find it helpful to carry out the following activity.
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ACTIVITY 10.1 The position vectors of a set of points are given by

r = ⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟

2
1

2
4–

λ

where λ is a parameter which may take any value.

(i) Show that λ " 2 corresponds to the point with position vector 
6
7
⎛
⎝⎜
⎞
⎠⎟ .

(ii) Find the position vectors of points corresponding to values of λ of �2, �1,      
0, 1

2 , 3
4
, 1, 3.

(iii) Mark all your points on a sheet of squared paper and show that when they 
are joined up they give the line AB in figure 10.2.

(iv) State what values of λ correspond to the points A, B, M and N. 

(v) What can you say about the position of the point if 
 (a)  0 ! λ ! 1? 
 (b)  λ " 1?  
 (c)  λ ! 0?

This activity should have convinced you that

r = ⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟

2
1

2
4–

λ

is the equation of the line passing through (2, �1) and (4, 3), written in vector 
form. 

You may find it helpful to think of this in these terms.

r = ⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟

2
1

2
4–

λ

λ is the Greek 
letter ‘lamda’.

The number λ is called a parameter 
and it can take any value. Of course, 

you can use other letters for the 
parameter such as µ, s and t.

O 2

A(2, –1)

B(4, 3)

3 4 51–1

3

2

1

–2

–1

x

y

Figure 10.2

3 Move λ steps of ( 24 ) (i.e. in the 

direction A
�q

B). λ need not be a whole 
number and may be negative.

1 Start at the 
origin.

2 Move to the point A with

position vector (  2�1 ).

and then
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You should also have noticed that when:

 λ "  0 the point corresponds to the point A

 λ "  1 the point corresponds to the point B

 0 ! λ ! 1 the point lies between A and B

 λ " 1 the point lies beyond B

 λ ! 0 the point lies beyond A.

The vector form of the equation is not unique; there are many (in fact infinitely 
many) different ways in which the equation of any particular line may be 
expressed. There are two reasons for this: direction and location.

Direction

The direction of the line in the example is 
2
4
⎛
⎝⎜
⎞
⎠⎟ . That means that for every 

2 units along (in the i direction), the line goes up 4 units (in the j direction). 
This is equivalent to stating that for every 1 unit along, the line goes up 2 units, 
corresponding to the equation

r " 
2
1

1
2–

⎛
⎝⎜

⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟λ .

The only difference is that the two equations have different values of λ for

particular points. In the first equation, point B, with position vector 
4
3
⎛
⎝⎜
⎞
⎠⎟ ,

corresponds to a value of λ of 1. In the second equation, the value of λ for B is 2.

The direction 
2
4
⎛
⎝⎜
⎞
⎠⎟  is the same as 

1
2
⎛
⎝⎜
⎞
⎠⎟ , or as any multiple of 

1
2
⎛
⎝⎜
⎞
⎠⎟  such as 

3
6
⎛
⎝⎜
⎞
⎠⎟ , 

–
–

5
10

⎛
⎝⎜

⎞
⎠⎟  or 

100 5
201

.⎛
⎝⎜

⎞
⎠⎟ . Any of these could be used in the vector equation of the line.

Location 

In the equation

r " 
2
1

2
4–

⎛
⎝⎜

⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟λ

2
1–

⎛
⎝⎜

⎞
⎠⎟  is the position vector of the point A on the line, and represents the point at 

which the line was joined. However, this could have been any other point on the 
line, such as M(3, 1), B(4, 3), etc. Consequently

r " 
3
1

2
4

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟λ

and

r " 
4
3

2
4

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟λ
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are also equations of the same line, and there are infinitely many other 
possibilities, one corresponding to each point on the line.

Notes

1  It is usual to refer to any valid vector form of the equation as the vector equation 

of the line even though it is not unique.

2 It is often a good idea to give the direction vector in its simplest integer form:

 for example, replacing 
2
4
⎛
⎝⎜

⎞
⎠⎟  with 

1
2
⎛
⎝⎜

⎞
⎠⎟ .

The general vector form of the equation of a line

If A and B are points with position a and b, then the equation

   r " O
�q

A + λA
�q

B 

may be written as r " a � λ(b � a)

which implies r " (1 � λ)a � λb. 

This is the general vector form of the equation of the line joining two points.

ACTIVITY 10.2 Plot the following lines on the same sheet of squared paper. When you have 
done so, explain why certain among them are the same as each other, others are 
parallel to each other, and others are in different directions.

(i) r " 
2
1

1
2–

⎛
⎝⎜

⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟λ  (ii) r " 

2
1

1
2–

–⎛
⎝⎜

⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟λ  (iii) r " 

0
2

1
2

⎛
⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟λ

(iv) r " 
1
3

3
6–

⎛
⎝⎜

⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟λ  (v) r " 

4
3

1
2

⎛
⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟λ

–

The same methods can be used to find the vector equation of a line in three 
dimensions, as shown in this example.

EXAMPLE 10.1 The co-ordinates of A and B are (–2, 4, 1) and (2, 1, 3) respectively.

(i) Find the vector equation of the line AB.
(ii) Does the point P(6, –2, 7) lie on the line AB?
(iii) The point N lies on the line AB. 

 Given that 3�A
�q

N�"�N
�q

B��find the co-ordinates of N.

SOLUTION 

(i) a " O
�q

A " 
−⎛

⎝
⎜

⎞

⎠
⎟

2
4
1

 and b " O
�q

B " 
2
1
3

⎛

⎝
⎜
⎞

⎠
⎟  

 A
�q

B " b � a "�
2
1
3

2
4
1

4
3
2

⎛

⎝
⎜
⎞

⎠
⎟ −

−⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟
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 The vector equation of a line can be written as 

  r " O
�q

A � λA
�q

B

� ¡	 r "�
−⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

2
4
1

4
3
2

λ

  

(ii) If P lies on the line AB then for some value of λ 

x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ =

−⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

6
2
7

2
4
1

4
3
2

λ

 Find the value of λ for the x co-ordinate.

x : 6 " �2 � 4λ    ¡    λ " 2     

  Then check whether this value of λ gives a y co-ordinate of �2 and a z 
co-ordinate of 7.

y : �2 " 4 � 3 w 2     
z : 7 | 1 � 2 w 2     

 So the point P(6, –2, 7) does not lie on the line. 

(iii)  Since 3�A
�q

N�"�N
�q

B�, N must lie 14 of the way along the line AB so the value 
of λ is 14.

  O
�q

N " O
�q

A � 14A
�q

B

   O
�q

N "�
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ + −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2

4

1

1
4

4

3

2

1
3

1

1
4
1
2

 So the co-ordinates of N are (–1, 3.25, 1.5).

EXERCISE 10A 1 For each of these pairs of points, A and B, write down:

(a) the vector A
�q

B 

(b)  �A
�q

B�
(c) the position vector of the mid-point of AB.

(i) A is (2, 3), B is (4, 11). 

(ii) A is (4, 3), B is (0, 0). 

(iii) A is (�2, �1), B is (4, 7). 

(iv) A is (�3, 4), B is (3, �4). 

(v) A is (�10, �8), B is (�5, 4).

There are other ways of writing this equation, 
for example 

r r=
⎛
⎝⎜
⎞
⎠⎟
+ −

⎛
⎝⎜

⎞
⎠⎟

=
−
−

⎛
⎝⎜

⎞
⎠⎟
+ −

⎛
⎝⎜

2
1
3

4
3
2

6
7
1

4
3
2

λ λor
⎞⎞
⎠⎟

but they are all equivalent to each other.
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2 Find the equation of each of these lines in vector form.

(i) Joining (2, 1) to (4, 5). 

(ii) Joining (3, 5) to (0, 8).

(iii) Joining (�6, �6) to (4, 4). 

(iv) Through (5, 3) in the same direction as i � j.

(v) Through (2, 1) parallel to 6i � 3j. 

(vi) Through (0, 0) parallel to 
–1

4
⎛
⎝⎜

⎞
⎠⎟ .

(vii) Joining (0, 0) to (�2, 8). 

(viii) Joining (3, �12) to (�1, 4).

3 Find the equation of each of these lines in vector form.

(i) Through (2, 4, �1) in the direction 
3
6
4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(ii) Through (1, 0, �1) in the direction 
1
0
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(iii) Through (1, 0, 4) and (6, 3, �2)

(iv) Through (0, 0, 1) and (2, 1, 4)

(v) Through (1, 2, 3) and (�2, �4, �6)

4 Determine whether the given point P lies on the line.

(i)   P(5, 1, 4) and the line r " 
1
3
4

2
1
0

⎛

⎝
⎜
⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟λ

(ii)   P(�1, 5, 1) and the line r " 
1
3
4

2
2
3

⎛

⎝
⎜
⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟λ

(iii)   P(�5, 3, 12) and the line r " 
1
0
2

2
1
5−

⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟λ  

(iv)   P(9, 0, �6) and the line r " 
1
2
0

4
1
2

⎛

⎝
⎜
⎞

⎠
⎟ + −

−

⎛

⎝
⎜

⎞

⎠
⎟λ

(v)   P(�9, �2, �17) and the line r " 
1
3
2

2
1
3−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜
⎞

⎠
⎟λ  

5 The co-ordinates of three points are A(�1, �2, 1),  B( �3, 4, �5) and C(0, �2, 4).

(i)   Find a vector equation of the line AB.

(ii)   Find the co-ordinates of the mid-point M of AB.

(iii)   The point N lies on BC. 

   Given that 2�B
�q

N�"�N
�q

C�, find the equation of the line MN.
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The intersection of two lines

Hold a pen and a pencil to represent two distinct straight lines as follows:

 ● hold them to represent parallel lines;

 ● hold them to represent intersecting lines;

 ● hold them to represent lines which are not parallel and which do not intersect 
(even if you extend them).

In three-dimensional space two or more straight lines which are not parallel and 
which do not meet are known as skew lines. In a plane two distinct lines are either 
parallel or intersecting, but in three dimensions there are three possibilities: the 
lines may be parallel, or intersecting, or skew. The next example illustrates a 
method of finding whether two lines meet, and, if they do meet, the co-ordinates 
of the point of intersection. 

EXAMPLE 10.2 Find the position vector of the point where the following lines intersect.

r " 
2
3

1
2

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟λ       and      r " 

6
1

1
3

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟µ

–
 

Note here that different letters are used for the parameters in the two equations 
to avoid confusion.

SOLUTION

When the lines intersect, the position vector is the same for each of them.

r " 
x
y

⎛
⎝⎜

⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟ + −

⎛
⎝⎜

⎞
⎠⎟

2
3

1
2

6
1

1
3

λ µ  

This gives two simultaneous equations for λ and µ.

x : 2 � λ " 6 � µ  ¡ λ � µ " 4
y : 3 � 2λ " 1 � 3µ  ¡  2λ� � 3µ " �2

Solving these gives λ " 2 and µ " �2. Substituting in either equation gives

r " 4
7
⎛
⎝⎜
⎞
⎠⎟

 

which is the position vector of the point of intersection.
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EXAMPLE 10.3 Find the co-ordinates of the point of intersection of the lines joining A(1, 6) to 
B(4, 0), and C(1, 1) to D(5, 3).

SOLUTION

A
�q

B = ⎛
⎝⎜
⎞
⎠⎟ −

⎛
⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟

4
0

1
6

3
6–  

and so the vector equation of line AB is

r " O
�q

A � λA
�q

B 

r = ⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

1
6

λ 3
6–

 

C
�q

D = ⎛
⎝⎜
⎞
⎠⎟ −

⎛
⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟

5
3

1
1

4
2  

and so the vector equation of line CD is

r " O
�q

C � µC
�q

D

r " 
1
1

4
2

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟µ

The intersection of these lines is at

r " 
1
6

3
6

1
1

4
2

⎛
⎝⎜
⎞
⎠⎟ + −

⎛
⎝⎜

⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟λ µ

O

D(5, 3)

A(1, 6)

B(4, 0)

C(1, 1)

41

3

1

x

y

6

Figure 10.3
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x : 1 � 3λ " 1 � 4µ  ¡ 3λ � 4µ " 0  !1  

y : 6 � 6λ " 1 � 2µ  ¡ 6λ � 2µ " 5  !2  

Solve !1  and !2  simultaneously:

!1 :    3λ �  4µ " 0
!2  × 2:    12λ � 4µ " 10
Add:  15λ   " 10

¡    λ " 2
3

Substitute λ " 2
3 in the equation for AB:

¡ r " 1
6

2
3

3
6

⎛
⎝⎜
⎞
⎠⎟ + ⎛

⎝⎜
⎞
⎠⎟–

¡� r " 3
2
⎛
⎝⎜
⎞
⎠⎟

The point of intersection has co-ordinates (3, 2).

Note

Alternatively, you could have found µ " 12 and substituted in the equation for CD.

In three dimensions, lines may be parallel, they may intersect or they may be skew.

EXAMPLE 10.4 Determine whether each pair of lines are parallel, intersect or are skew.

(i)  r = −
⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟

1
2
1

3
2
1

λ  and r =
−

⎛

⎝
⎜

⎞

⎠
⎟ + −

−

⎛

⎝
⎜

⎞

⎠
⎟

1
3
2

6
4
2

µ  

(ii) r =
−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

1
2
1

2
3
4

λ  and r = −
−

⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟

4
2
5

1
2
1

µ  

SOLUTION  

(i)  The vectors 
6
4
2

2
3
2
1

−
−

⎛

⎝
⎜

⎞

⎠
⎟ = −

−⎛

⎝
⎜

⎞

⎠
⎟  and 

6
4
2

2
3
2
1

−
−

⎛

⎝
⎜

⎞

⎠
⎟ = −

−⎛

⎝
⎜

⎞

⎠
⎟ are in the same direction as 

6
4
2

2
3
2
1

−
−

⎛

⎝
⎜

⎞

⎠
⎟ = −

−⎛

⎝
⎜

⎞

⎠
⎟

 So the lines are parallel.

Note the lines are different as one 
line passes through (1, –2, 1) and 

the other through (1, 3, –2).
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(ii) These lines are not parallel, so either they intersect or they are skew.   
 If the two lines intersect then there is a point (x, y, z) that lies on both lines.

x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ =

−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

1
2
1

2
3
4

λ  and 
x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ = −

−

⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟

4
2
5

1
2
1

µ  

 This gives three simultaneous equations for λ and µ.

x : 1 � 2λ " 4 � µ ¡  2λ � µ " 3 !1

y : 2 � 3λ " �2 � 2µ ¡  3λ � 2µ " 4 !2

z : �1 + 4λ " �5 � µ ¡  4λ � µ " �4 !3

 Now solve any two of the three equations above simultaneously.

 Using !1  and !2 :

 2λ � µ " 3 4λ � 2µ " 6{                    } ¡� {                    } ¡� λ " 2, µ " �1
 3λ � 2µ " 4 3λ � 2µ " 4

  If these solutions satisfy the previously unused equation (equation !3  here) 
then the lines meet, and you can substitute the value of λ (or µ) into 
equations !1 , !2  and !3  to find the co-ordinates of the point of intersection.

 If these solutions do not satisfy equation !3  then the lines are skew.

4λ � µ " �4 !3 

 When λ = 2 and µ " �1

4λ � µ " 9 | �4

  As there are no values for λ and µ that satisfy all three equations, the lines do 
not meet and so are skew; you have already seen that they are not parallel.

Note 

If the equation of the second line was

x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟

4
2

1
2
18

µ

then the values of λ = 2 and µ = –1 would produce the same point for both lines:

and
 

x
y
z

x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ =

−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟

⎛

1
2
1

2
2
3
4

5
4
7

⎝⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ −

−⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟

4
2
8

1
1
2
1

5
4
7

.

So the lines would intersect at (5, –4, 7).
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EXERCISE 10B 1  Find the position vector of the point of intersection of each of these pairs 
of lines.

(i) r " 2
1

1
0

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟λ  and r " 

3
0

1
1

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟µ

(ii) r " 2
1

1
2–

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟λ  and r  " µ 1

1
⎛
⎝⎜
⎞
⎠⎟

(iii) r " 
0
5

2
2

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟λ –

–
 and r " 0

7
1
2–

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟µ

(iv) r " 
−⎛
⎝⎜

⎞
⎠⎟ +

−⎛
⎝⎜

⎞
⎠⎟

2
3

1
3–

λ  and r " 
1
3

2
1

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟µ

–

(v) r " 
2
7

1
1

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟λ

–
 and r " 

5
1

1
2

⎛
⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟µ

2 Decide whether each of these pairs of lines intersect, are parallel or are skew.  
If the lines intersect, find the co-ordinates of the point of intersection.

(i) r r= −
−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜
⎞

⎠
⎟ =

⎛

⎝
⎜
⎞

⎠
⎟ +

−

⎛

⎝
⎜

1
6
1

1
2
3

9
7
2

2
3
1

λ µand
⎞⎞

⎠
⎟

(ii) r r= −
⎛

⎝
⎜

⎞

⎠
⎟ + −

−

⎛

⎝
⎜

⎞

⎠
⎟ =

−⎛

⎝
⎜

⎞

⎠
⎟ + −

−

1
6
0

6
9
3

5
3
0

2
3
1

λ µand
⎛⎛

⎝
⎜

⎞

⎠
⎟

(iii) r r= −
⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟ =

−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛6
4
2

1
2
5

1
4

17

1
1
2

λ µand
⎝⎝
⎜

⎞

⎠
⎟

(iv) r r=
−⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜
⎞

⎠
⎟ =

−⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

1
2
4

2
0
3

4
4
6

5
2
1

λ µand
⎞⎞

⎠
⎟

(v) r r= −
⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟ =

−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝

0
1
4

5
3
3

2
5
1

4
3
2

λ µand ⎜⎜
⎞

⎠
⎟

(vi) r r=
−

⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝

9
3
4

1
2
3

1
4
5

1
1
2

λ µand ⎜⎜
⎞

⎠
⎟

(vii) r r=
⎛

⎝
⎜
⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟ =

−
−
−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝

2
3
1

1
1
2

1
3
1

1
3
2

λ µand ⎜⎜
⎞

⎠
⎟

3 In this question the origin is taken to be at a harbour and the unit vectors         
i and j to have lengths of 1 km in the directions E and N.

A cargo vessel leaves the harbour and its position vector t hours later is given by

r1 " 12ti � 16tj.

A fishing boat is trawling nearby and its position at time t is given by

r2 " (10 � 3t)i � (8 � 4t)j.
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 (i) How far apart are the two boats when the cargo vessel leaves harbour?

(ii) How fast is each boat travelling?

(iii) What happens?

4 The points A(1, 0), B(7, 2) and C(13, 7) are the vertices of a triangle. 

The mid-points of the sides BC, CA and AB are L, M and N.

(i) Write down the position vectors of L, M and N.

(ii) Find the vector equations of the lines AL, BM and CN.

(iii) Find the intersections of these pairs of lines.

(a) AL and BM (b) BM and CN

(iv) What do you notice?

5 The line r =
−

−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

4
4

12

2
10
11

q  meets r = −
−

⎛

⎝
⎜

⎞

⎠
⎟ + −

−

⎛

⎝
⎜

⎞

⎠
⎟

4
15
16

2
3
5

s  at A and meets

  r =
−

−
−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜
⎞

⎠
⎟

1
29

3

1
1
8

t  at B. Find the co-ordinates of A and the length of AB.

6 To support a tree damaged in a gale a tree surgeon attaches wire guys to four of 
the branches (see the diagram). He joins (2, 0, 3) to (�1, 2, 6) and (0, 3, 5) to 
(�2, �2, 4). Do the guys, assumed straight, meet?

7 Show that the three lines r r=
−

−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟ +

−

7
24

4

4
7
4

3
10
15

2
2
1

q s,
⎛⎛

⎝
⎜

⎞

⎠
⎟  and 

 r =
−⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

3
6
6

8
3
2

t  form a triangle and find the lengths of its sides.
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8   The drawing shows an ordinary music stand, which consists of a rectangle 
DEFG with a vertical support OA.

 

Relative to axes through the origin O, which is on the floor, the co-ordinates 
of various points are given (with dimensions in metres) as:

A is (0, 0, 1)   D is (�0.25, 0, 1)   F is (0.25, 0.15, 1.3).

DE and GF are horizontal, A is the mid-point of DE and B is the mid-point of GF. 

C is on AB so that AC " 
1
3AB.

(i) Write down the vector A
�q

D and show that E
�q

F is 
0
0 15
0 3

.

.

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

(ii) Calculate the co-ordinates of C.

(iii) Find the equations of the lines DE and EF in vector form.
  [MEI, part]

The angle between two lines

In Pure Mathematics 1, Chapter 8 you learnt that the angle, θ, between two 

vectors a =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a
a
a

1

2

3

 and b =
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

b
b
b

1

2

3

 can be found using the formula:

cos θ " 
a . b
a b

where a . b is the scalar product and a . b " a1b1 � a2b2 � a3b3. 
 

G
B

F

D

E

A

C

K D E F R S W
K D E F R S W
K D E F R S W
K D E F R S W
K D E F R S W

K D E F R S W
K D E F R S W
K D E F R S W
K D E F R S W
K D E F R S W

O

θ

E

D

Figure 10.4
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EXAMPLE 10.5 (i) Find the angle between the vectors 

−⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

4
3
0

2
1
3

and .

(ii) Verify that the vectors 
−
−
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

9
2
4

2
3
3

and  are perpendicular.

SOLUTION 

(i) Let a " 
−⎛

⎝
⎜

⎞

⎠
⎟

4
3
0

 ¡ a = − + + =( )4 3 0 52 2 2      

 and b " 
2
1
3

−
⎛

⎝
⎜

⎞

⎠
⎟  ¡ b = + − + =2 1 3 142 2 2( )     

 The scalar product a . b is 

−⎛

⎝
⎜

⎞

⎠
⎟ −
⎛

⎝
⎜

⎞

⎠
⎟ = − × + × − + × = −

4
3
0

2
1
3

4 2 3 1 0 3 11. ( ) ( )

  

 Substituting into cos θ " 
a . b
a b  

gives:

        
cosθ = −11

5 14

¡ θ = 126.0°

(ii) When two vectors are perpendicular, the angle between them is 90°. 
 Since cos 90° " 0 then a . b " 0.
  So if the scalar product of two non-zero vectors is zero then the vectors are 

perpendicular.

−
−
⎛

⎝
⎜

⎞

⎠
⎟ −
⎛

⎝
⎜

⎞

⎠
⎟ = − × + − × − + ×

= −

9
2
4

2
3
3

9 2 2 3 4 3

1

. ( ) ( ) ( )

( 88 6 12

0

) + +
=   

 Therefore, the two vectors are perpendicular.

Even if two lines do not meet, it is still possible to specify the angle between them. 
The lines l and m shown in figure 10.5 do not meet; they are described as skew. 

θ

O

P

P


Figure 10.5 
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The angle between them is that between their directions; it is shown in figure 10.5 
as the angle θ between the lines l and m', where m' is a translation of the line m to 
a position where it does intersect the line l.

EXAMPLE 10.6 Find the angle between the lines

r " 
1
0
4

2
1
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ –
–

 and r " 
2
1
3

3
0
1

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

µ .

SOLUTION 

The angle between the lines is the angle between their directions 
2
1
1

–
–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 and 
3
0
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

Using cos θ " 
a . b
a b

            cos θ " 2 3 1 0 1 1

2 1 1 3 0 12 2 2 2 2 2

× + × + ×
+ − + − × + +

(– ) (– )

( ) ( )

            cos θ " 5

6 10w

¡     θ " 49.8°

EXERCISE 10C  Remember i " 
1
0
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, j " 
0
1
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 and k " 
0
0
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

 In questions 1 to 5, find the angle between each pair of lines. 

1 r " 
2
1
3

1
4
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

s  and r " 
6

10
4

2
1
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t

2 r " s
4
1
4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 and r " 
7
0
3

1
2
1– –

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t

3 r " 
4
2
1

3
7
4−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

s  and r " 
5
1
0

2
8
5

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t

4 r " 2i � 3j � 4k � s(i � j � k) and r " t(i � k)

5 r " i � 2j � k � s(2i � 3j � 2k) and r " 2i � j � tk
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6 The diagram shows an extension to a house. Its base and walls are rectangular 
and the end of its roof, EPF, is sloping, as illustrated.

(i) Write down the co-ordinates of A and F.

(ii) Find, using vector methods, the angles FPQ and EPF.

The owner decorates the room with two streamers which are pulled taut. One 
goes from O to G, the other from A to H. She says that they touch each other 
and that they are perpendicular to each other. 

(iii) Is she right?

7 The points A and B have position vectors, relative to the origin O, given by

O
�q

A " i � 2j � 3k and O
�q

B " 2i � j � 3k.

 The line l has vector equation

r " (1 � 2t)i � (5 � t)j � (2 � t)k.

(i) Show that l does not interesect the line passing through A and B.

(ii) The point P lies on l and is such that angle PAB is equal to 60°. Given 
that the position vector of P is (1 � 2t)i � (5 � t)j � (2 � t)k, show that 
3t2 � 7t � 2 " 0. Hence find the only possible position vector of P.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 June 2008]

2

E
��� �� 3�

��� �� ��

4 �2� �� ��

G ��� �� 3�

% ��� �� ��

�2� 1� ��

A

+

)
C

P
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The perpendicular distance from a point to a line

The scalar product is also useful when determining the distance between a point 
and a line.

EXAMPLE 10.7 Find the shortest distance from point P(11, �5, �3) to the line l with equation 

r " 
1
5
0

3
1
4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ .

SOLUTION 

The shortest distance from P to the line l is �N
�q

P� where N is a point on the line l 
and PN is perpendicular to the line l.

You need to find the co-ordinates of N and then you can find �N
�q

P�.
N lies on the line l. Let the value of λ at N be t.
So, relative to the origin O

O
�q

N "��
1
5
0

3
1
4

1 3
5

4

⎛

⎝
⎜
⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟ =

−
+

⎛

⎝
⎜

⎞

⎠
⎟t

t
t

t

and    N
�q

P " O
�q

P � O
�q

N

� � ������"�
11
5
3

1 3
5

4

10 3
10
3 4

−
−

⎛

⎝
⎜

⎞

⎠
⎟ −

−
+

⎛

⎝
⎜

⎞

⎠
⎟

+
− −
− −

⎛

⎝
⎜

⎞

t
t

t

t
t
t⎠⎠
⎟

� �

� � ������"

As N
�q

P is perpendicular to the line l, 

N
�q

P .          = 0

P

O
1

Figure 10.6

−⎛

⎝
⎜

⎞

⎠
⎟

3
1
4

The direction of  
the line l

When two vectors are 
perpendicular, their 
scalar product is 0.
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N
�q

P .
−⎛

⎝
⎜

⎞

⎠
⎟

3
1
4

 "
10 3

10
3 4

3
1
4

+
− −
− −

⎛

⎝
⎜

⎞

⎠
⎟

−⎛

⎝
⎜

⎞

⎠
⎟

t
t
t

.  

� " (10 � 3t) w (�3) � (�10 � t) w 1 � (�3 � 4t) w 4
� " �30 � 9t � 10 � t � 12 � 16t
� " �52 � 26t

The scalar product is 0, so 

�52 � 26t " 0       ¡       t " �2

Substituting t " �2 into O
�q

N and N
�q

P gives 

 O
�q

N "�
1
5
0

2
3
1
4

7
3
8

⎛

⎝
⎜
⎞

⎠
⎟ −

−⎛

⎝
⎜

⎞

⎠
⎟ =

−

⎛

⎝
⎜

⎞

⎠
⎟

and N
�q

P " 
10 3 2

10 2
3 4 2

4
8
5

+ × −
− − −

− − × −

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟

( )
( )

( )   

So �N
�q

P� "� 4 8 52 2 2+ − +( )

  " 105
  " 10.25 units

EXERCISE 10D 1   For each point P and line l find

(a)  the co-ordinates of the point N on the line such that PN is perpendicular 
to the line

(b)  the distance PN.

(i) P(–2, 11, 5) and  r =
−

⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟

0
2
3

1
2
5

t

(ii) P(7, –1, 6) and r =
⎛

⎝
⎜
⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

2
1
3

1
2
4

t

(iii) P(8, 4, –1) and r =
−

⎛

⎝
⎜

⎞

⎠
⎟ +

−
−
⎛

⎝
⎜

⎞

⎠
⎟

1
5
3

1
2
0

t

2 Find the perpendicular distance of the point P(–7, –2, 13) to the line 

 

r =
⎛

⎝
⎜
⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟

1
2
5

1
3
4

λ .

3  Find the distance of the point C(0, 6, 0) to the line joining the points  
A(–4, 2, –3) and B(–2, 0, 1).
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4  The room illustrated in the diagram has rectangular walls, floor and ceiling. 
A string has been stretched in a straight line between the corners A and G.

The corner O is taken as the origin. A is (5, 0, 0), C is (0, 4, 0) and D is  
(0, 0, 3), where the lengths are in metres. 

(i) Write down the co-ordinates of G. 

(ii) Find the vector A
�q

G and the length of the string �A
�q

G�.

(iii) Write down the equation of the line AG in vector form.

A spider walks up the string, starting from A. 

(iv) Find the position vector of the spider when it is at Q, one quarter of the 
way from A to G, and find the angle OQG. 

(v) Show that when the spider is 1.5 m above the floor it is at its closest point 
to O, and find how far it is then from O.

  [MEI]

5 The diagram illustrates the flight path of a helicopter H taking off from an 
airport.

Co-ordinate axes Oxyz are set up with the origin O at the base of the airport 
control tower. The x axis is due east, the y axis due north and the z axis vertical.

The units of distance are kilometres throughout.

]

y

��� �� 3� '

2 ��� �� �� A
��� �� ��

%

)

E

��� �� ��
C

G

striQg

sSider

x

OControl
tower

G F
θ

H
z

x (E)

y (N)
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The helicopter takes off from the point G.

The position vector r of the helicopter t minutes after take-off is given by

  r " (1 � t)i � (0.5 � 2t)j � 2tk.

(i)  Write down the co-ordinates of G.

(ii) Find the angle the flight path makes with the horizontal. 
(This angle is shown as θ in the diagram.)

(iii) Find the bearing of the flight path. 
(This is the bearing of the line GF shown in the diagram.)

(iv) The helicopter enters a cloud at a height of 2 km. 
Find the co-ordinates of the point where the helicopter enters the cloud.

(v) A mountain top is situated at M(5, 4.5, 3). 
Find the value of t when HM is perpendicular to the flight path GH. 
Find the distance from the helicopter to the mountain top at this time.

  [MEI]

The vector equation of a plane

●? Which balances better, a three-legged stool or a four-legged stool? Why? 
What information do you need to specify a particular plane?

There are various ways of finding the equation of a plane and these are given in  
this book. Your choice of which one to use will depend on the information you  
are given.
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Finding the equation of a plane given three points on it

!  There are several methods used to find the equation of a plane through three 
given points. The shortest method involves the use of vector product which is 
beyond the scope of this book. The method given here develops the same ideas 
as were used for the equation of a line. It will help you to understand the extra 
concepts involved, but it is not a requirement of the Cambridge syllabus.

Vector form

To find the vector form of the equation of the plane through the points A, B and 
C (with position vectors O

�q
A " a, O

�q
B " b, O

�q
C " c), think of starting at the origin, 

travelling along OA to join the plane at A, and then any distance in each of the 
directions A

�q
B and A

�q
C to reach a general point R with position vector r, where

r  " O
�q

A � λA
�q

B � µA
�q

C.

This is a vector form of the equation of the plane. Since O
�q

A " a, A
�q

B " b � a and 
A
�q

C " c � a, it may also be written as 

r " a � λ(b � a) � µ(c � a).

EXAMPLE 10.8 Find the equation of the plane through A(4, 2, 0), B(3, 1, 1) and C(4, �1, 1).

SOLUTION

O
�q

A  =
⎛

⎝
⎜

⎞

⎠
⎟

4
2
0

 A
�q

B " O
�q

B � O
�q

A =
⎛

⎝
⎜
⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ =

−
−

⎛

⎝
⎜

⎞

⎠
⎟

3
1
1

4
2
0

1
1
1

O

A
B

C

R

y
x

z

Figure 10.7

O
�q

R " O
�q

A � λA
�q

B � µA
�q

C
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 A
�q

C " O
�q

C � O
�q

A = −
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜

⎞

⎠
⎟

4
1
1

4
2
0

0
3
1

So the equation r " O
�q

A � λA
�q

B � µA
�q

C becomes

r =
⎛

⎝
⎜

⎞

⎠
⎟ +

−
−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

4
2
0

1
1
1

0
3
1

λ µ .

This is the vector form of the equation, written using components.

Cartesian form

You can convert this equation into cartesian form by writing it as

x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ +

−
−

⎛

⎝
⎜

⎞

⎠
⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟

4
2
0

1
1
1

0
3
1

λ µ

and eliminating λ and µ. The three equations contained in this vector equation 
may be simplified to give

λ " �x � 4 !1    

λ � 3µ " �y � 2 !2    

λ � µ " z !3    

Substituting !1  into !2  gives

��x � 4 � 3µ " �y � 2

 3µ " x � y � 2

 µ " 13(x � y � 2)

Substituting this and !1  into !3  gives

 �x � 4 � 13(x � y � 2) " z

  �3x � 12 � x � y � 2 " 3z

                 2x � y � 3z  " 10

and this is the cartesian equation of the plane through A, B and C.

Note

In contrast to the equation of a line, the equation of a plane is more neatly expressed 

in cartesian form. The general cartesian equation of a plane is often written as either

ax � by � cz " d         or         n1x � n2y � n3z " d.
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Finding the equation of a plane using the direction 
perpendicular to it

●? Lay a sheet of paper on a flat horizontal table and mark several straight lines on 
it. Now take a pencil and stand it upright on the sheet of paper (see figure 10.8).

(i) What angle does the pencil make with any individual line?

(ii) Would it make any difference if the table were tilted at an angle (apart from 
the fact that you could no longer balance the pencil)?

The discussion above shows you that there is a direction (that of the pencil) 
which is at right angles to every straight line in the plane. A line in that direction 
is said to be perpendicular to the plane or normal to the plane.

This allows you to find a different vector form of the equation of a plane which 
you use when you know the position vector a of one point A in the plane and the 
direction n " n1i � n2 j � n3k perpendicular to the plane.

What you want to find is an expression for the position vector r of a general 
point R in the plane (see figure 10.9). Since AR is a line in the plane, it follows 
that AR is at right angles to the direction n.

A
�q

R . n " 0

Figure 10.8

y

n

A 5

x

z

Figure 10.9

The point R has 
position vector r.

The point A has 
position vector a.

The vector A
�q

R is 
r – a.
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The vector A
�q

R  is given by

                                    A
�q

R " r � a

and so (r � a) . n " 0.

This can also be written as

        r . n � a . n " 0

or  
x
y
z

n
n
n

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟.

1

2

3

 � a . n " 0

¡              

x
y
z

n
n
n

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.
1

2

3

 " a . n

¡  n1x � n2y � n3z  " d

where d " a . n.

Notice that d is a constant scalar.

EXAMPLE 10.9 Write down the equation of the plane through the point (2, 1, 3) given that

the vector 
4
5
6

⎛

⎝
⎜
⎞

⎠
⎟  is perpendicular to the plane.

SOLUTION

In this case, the position vector a of the point (2, 1, 3) is given by a " 
2
1
3

⎛

⎝
⎜
⎞

⎠
⎟ .

The vector perpendicular to the plane is

n " 
n
n
n

1

2

3

4
5
6

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

⎛

⎝
⎜
⎞

⎠
⎟ .

The equation of the plane is

nlx � n2y � n3z " a . n

    4x � 5y � 6z " 2 × 4 � 1 × 5 � 3 × 6

    4x � 5y � 6z " 31

Look carefully at the equation of the plane in Example 10.9. You can see at once 

that the vector 
4
5
6

⎛

⎝
⎜
⎞

⎠
⎟ , formed from the coefficients of x, y and z, is perpendicular to 

the plane.

For example, the plane through  
A(2, 0, 0) perpendicular to  

n " (3i � 4j � k) can be written 
as (r � 2i)  .  (3i � 4j � k) " 0 

which simplifies to 3x � 4y � z " 6.
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The vector 

n
n
n

1

2

3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  is perpendicular to all planes of the form

nlx � n2y � n3z " d

whatever the value of d (see figure 10.10). Consequently, all planes of that form 
are parallel; the coefficients of x, y and z determine the direction of the plane, the 
value of d its location.

The intersection of a line and a plane

There are three possibilities for the intersection of a line and a plane.

The point of intersection of a line and a plane is found by following the 
procedure in the next example.

Q1
Q2
Q3

Q1x � Q2 y � Q3]   G1

Q1x � Q2 y � Q3]   G2

Q1x � Q2 y � Q3]   G3

Figure 10.10

� 7he liQe aQd SlaQe are QRt
Sarallel aQd sR the\ iQtersect
iQ RQe SRiQt

� 7he liQe aQd SlaQe are
Sarallel aQd sR dR QRt
iQtersect

� 7he liQe aQd SlaQe
are Sarallel aQd the
liQe lies iQ the SlaQe

Figure 10.11
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EXAMPLE 10.10 Find the point of intersection of the line r " 

2
3
4

1
2
1

⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟λ

 

with the plane 
5x � y � z " 1.

SOLUTION

The line is

r " 
x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟

2
3
4

1
2
1

λ

and so for any point on the line

x " 2 � λ        y " 3 � 2λ      and      z " 4 � λ.

Substituting these into the equation of the plane 5x � y � z " 1 gives

 5(2 � λ) � (3 � 2λ) � (4 � λ) " 1
 8λ " �8  
 λ� " �1.

Substituting λ " �1 in the equation of the line gives

r " 
x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ −

−

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜
⎞

⎠
⎟

2
3
4

1
2
1

1
1
5

so the point of intersection is (1, 1, 5).

As a check, substitute (1, 1, 5) into the equation of the plane:

5x � y � z  " 5 � 1 � 5 
  " 1   as required.

When a line is parallel to a plane, its direction vector is perpendicular to the 
plane’s normal vector.

EXAMPLE 10.11 Show that the line r " 
2
1
0

3
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t
–

 is parallel to the plane 2x � 4y � 5z " 8.

SOLUTION

The direction of the line is 
3
1
2–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 and of the normal to the plane is 
2
4
5

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

If these two vectors are perpendicular, then the line and plane are parallel.

To prove that two vectors are perpendicular, you need to show that their scalar 
product is 0.

 
3
1
2

2
4
5–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.  " 3 w�2 ��1 w�4 ��(�2) w�5 " 0

So the line and plane are parallel as required.
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To prove that a line lies in a plane, you need to show the line and the plane are 
parallel and that any point on the line also lies in the plane.

EXAMPLE 10.12 Does the line r " 
2
1
0

3
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t
–

 lie in the plane 2x � 4y � 5z " 8?

SOLUTION

You have already seen that this line and plane are parallel in Example 10.11.

Find a point on the line r " 
2
1
0

3
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t
–

 by setting t " 1.

So the point (5, 2, �2) lies on the line.

Now check that this point satisfies the equation of the plane, 2x � 4y � 5z " 8.

 2 w 5 � 4 w 2 � 5 (�2) " 8 9

The line and the plane are parallel and the point (5, 2, �2) lies both on the line 
and in the plane. Therefore the line must lie in the plane.

Note

The previous two examples showed you that the line r " 
2
1
0

3
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t
–

 lies in the plane 

2x � 4y � 5z " 8. This line is parallel to all the planes in the form 2x � 4y � 5z " d but 
in the case when d " 8 it lies in the plane; for other values of d the line and the 
plane never meet.

The distance of a point from a plane

The shortest distance of a point, A, from a plane is the distance AP, where P is the 
point where the line through A perpendicular to the plane intersects the plane 
(see figure 10.12). This is usually just called the distance of the point from the 
plane. The process of finding this distance is shown in the next example.

A

P

Figure 10.12
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EXAMPLE 10.13 A is the point (7, 5, 3) and the plane π has the equation 3x � 2y � z " 6. Find 

(i) the equation of the line through A perpendicular to the plane π 
(ii) the point of intersection, P, of this line with the plane 
(iii) the distance AP.

SOLUTION

(i) The direction perpendicular to the plane 3x � 2y � z " 6 is 
3
2
1

⎛

⎝
⎜

⎞

⎠
⎟  so the line 

 through (7, 5, 3) perpendicular to the plane is given by

r " 
7
5
3

3
2
1

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟λ .

(ii) For any point on the line

x " 7 � 3λ        y " 5 � 2λ        and        z " 3 � λ.

Substituting these expressions into the equation of the plane 3x � 2y � z " 6 
gives 

 3(7 � 3λ) � 2(5 � 2λ) � (3 � λ) " 6
 14λ " �28
 λ " �2.

So the point P has co-ordinates (1, 1, 1).

(iii) The vector A
�q

P is given by

1
1
1

7
5
3

6
4
2

⎛

⎝
⎜
⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟ =

−
−
−

⎛

⎝
⎜

⎞

⎠
⎟

and so the length AP is (– ) (– ) (– )6 4 2 562 2 2+ + = .

Note

In practice, you would not usually follow the procedure in Example 10.13 because 

there is a well-known formula for the distance of a point from a plane. You are  

invited to derive this in the following activity.

ACTIVITY 10.3 Generalise the work in Example 10.13 to show that the distance of the point             
(α, β, γ) from the plane n1x � n2y � n3z " d is given by

n n n d

n n n
1 2 3

1
2

2
2

3
2

α γ� �
� �
β –

.



V
ec

to
rs

256

P3 

10

The angle between a line and a plane 

You can find the angle between a line and a plane by first finding the angle 
between the QRUPDO to the plane and the direction of the line. A normal to a 
plane is a line perpendicular to it. 

The angle between the normal, n, and the plane is 90°.

Angle A is the angle between the line l and the normal to the plane, so the angle 
between the line and the plane, angle B, is 90° – A.

EXAMPLE 10.14 Find the angle between the line r =
−

−

⎛

⎝
⎜

⎞

⎠
⎟ +

−⎛

⎝
⎜

⎞

⎠
⎟

1
2
3

1
2
5

t  and the plane 2x � 3y � z " 4. 

SOLUTION 

The normal, n, to the plane is 
2
3
1

⎛

⎝
⎜
⎞

⎠
⎟ . The direction, d, of the line is 

−⎛

⎝
⎜

⎞

⎠
⎟

1
2
5

.

The angle between the normal to the plane and the direction of the line is given by:

 cos A " 
n . d
n d

 cos A " 9
14 30w

¡� A = 63.95°

¡� B = 26.05°

So the angle between the line and the plane is 26° to the nearest degree.

Q

O
$
%

Figure 10.13

Angle B is the angle 
between the line and 

the plane.

n . d = 2 w (�1) � 3 w 2 � 1 w 5 " 9

Since A + B = 90°
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EXERCISE 10E 1 Determine whether the following planes and lines are parallel.
 If they are parallel, show whether the line lies in the plane.

(i) r " 
3
1
2

1
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t –  and 3x � y � z " 8

(ii) r " 
2
1
5

1
4
3–

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t  and x � 2y � 3z " 2

(iii)  r " 
2
0
7

3
2
5

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t
–

–
 and 2x � 3y � z " 5

(iv) r " 
–

–
2
1
4

3
4
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t  and 4x � 3y � z " �1

(v) r " 
2
1
0

5
4
7

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t
–

 and x � 2y � 6z " 0

(vi) r " 
2
3
5

1
2
5

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

t
–

 and 3x � 4y � z " 7

2 The points L, M and N have co-ordinates (0, �1, 2), (2, 1, 0) and (5, 1, 1).

(i) Write down the vectors L
�q
M and L

�q
N.

(ii) Show that L
�q
M .

1
4
3

1
4
3

−
−

⎛

⎝
⎜

⎞

⎠
⎟ −

−

⎛

⎝
⎜

⎞

⎠
⎟ " L

�q
N.

1
4
3

1
4
3

−
−

⎛

⎝
⎜

⎞

⎠
⎟ −

−

⎛

⎝
⎜

⎞

⎠
⎟ " 0.

(iii) Find the equation of the plane LMN.

3 (i) Show that the points A(1, 1, 1), B(3, 0, 0) and C(2, 0, 2) all lie in the plane 
2x � 3y � z " 6.

(ii) Show that A
�q

B .
2
3
1

2
3
1

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ " A

�q
C .

2
3
1

2
3
1

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  " 0

(iii) The point D has co-ordinates (7, 6, 2). D lies on a line perpendicular to the 
plane through one of the points A, B or C. 

 Through which of these points does the line pass?

4  The lines l, r " 
2
1
0

1
1
1

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜
⎞

⎠
⎟λ , and m, r " 

4
0
2

1
0
1

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟µ , lie in the same plane π.

(i) Find the co-ordinates of any two points on each of the lines.

(ii) Show that all the four points you found in part (i) lie on the plane x � z " 2.

(iii) Explain why you now have more than sufficient evidence to show that the 
plane π has equation x � z " 2.

(iv) Find the co-ordinates of the point where the lines l and m intersect.
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5 Find the points of intersection of the following planes and lines.

(i) x � 2y � 3z " 11 and r " 
1
2
4

1
1
1

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜
⎞

⎠
⎟λ

(ii) 2x � 3y � 4z " 1 and r =
−
−
−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟

2
3
4

4
5

λ
3

(iii) 3x � 2y � z " 14 and  r " 
8
4
2

1
2
1

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟λ

(iv) x � y � z " 0 and r " λ
1
1
2

⎛

⎝
⎜

⎞

⎠
⎟

(v) 5x � 4y � 7z " 49 and r = −
⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟

3
1
2

2
5
3

λ

6 In each of the following examples you are given a point A and a plane π. Find

(a) the equation of the line through A perpendicular to π 

(b) the point of intersection, P, of this line with π
(c) the distance AP.

(i) A is (2, 2, 3);  π is x � y � 2z " 0

(ii) A is (2, 3, 0);  π is 2x � 5y � 3z " 0

(iii) A is (3, 1, 3);  π is x " 0

(iv) A is (2, 1, 0);  π is 3x � 4y � z " 2

(v) A is (0, 0, 0);  π is x � y � z " 6

7 The points U and V have co-ordinates (4, 0, 7) and (6, 4, 13). 
The line UV is perpendicular to a plane and the point U lies in the plane.

(i) Find the equation of the plane in cartesian form.

(ii) The point W has co-ordinates (�1, 10, 2). 
Show that WV2 " WU2 � UV2.

(iii) What information does this give you about the position of W? 
Confirm this information by a different method.

8 (i) Find the equation of the line through (13, 5, 0) parallel to the line

r " 
2
1
4

3
1
2

−
⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟λ .

(ii) Where does this line meet the plane 3x � y � 2z " 2? 

(iii) How far is the point of intersection from (13, 5, 0)?
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9 (i)  Find the angle between the line r " i � 2j � t(3i � 2j � k) and the plane 
2x � 3y � z " 1.

(ii)  Find the angle between the line r " 
−⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟

1
0
2

1
3
2

t  and the plane 

 4x � 3z " �2.

(iii)  Find the angle between the line r " i � 2j � t(3i � 2j � k) and the plane 
7x � 2y � z " 1.

10 A is the point (1, 2, 0), B is (0, 4, 1) and C is (9, �2, 1).

(i) Show that A, B and C lie in the plane 2x � 3y � 4z " 8.

(ii) Write down the vectors A
�q

B and A
�q

C and verify that they are at right 

 angles to 
2
3
4−

⎛

⎝
⎜

⎞

⎠
⎟ .

(iii) Find the angle BAC.

(iv) Find the area of triangle ABC (using area " 12bc sin A).
11 P is the point (2, �1, 3), Q is (5, �5, 3) and R is (7, 2, �3). Find 

(i) the lengths of PQ and QR 

(ii) the angle PQR 

(iii) the area of triangle PQR

(iv) the point S such that PQRS is a parallelogram.

12 P is the point (2, 2, 4), Q is (0, 6, 8), X is (�2, �2, �3) and Y is (2, 6, 9).

(i) Write in vector form the equations of the lines PQ and XY.

(ii) Verify that the equation of the plane PQX is 2x � 5y � 4z " �2.

(iii) Does the point Y lie in the plane PQX?

(iv) Does any point on PQ lie on XY? (That is, do the lines intersect?)

13 You are given the four points O(0, 0, 0), A(5, �12, 16), B(8, 3, 19) and
C(�23, �80, 12).

(i) Show that the three points A, B and C all lie in the plane with equation 
2x � y � 3z " 70.

(ii) Write down a vector which is normal to this plane.

(iii) The line from the origin O perpendicular to this plane meets the plane
at D. Find the co-ordinates of D.

(iv) Write down the equations of the two lines OA and AB in vector form.

(v) Hence find the angle OAB, correct to the nearest degree.
  [MEI]
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14 A pyramid in the shape of a tetrahedron has base ABC and vertex P as shown 
in the diagram. The vertices A, B, C, P have position vectors

 a " �4j � 2k,
 b " 2i � 4k,
 c " �5i � 2j � 6k,
 p " 3i � 8j � 12k

 respectively.

 The equation of the plane of the base is

r. 
2
3
4
−

⎛

⎝
⎜

⎞

⎠
⎟

 

" 20.

(i) Write down a vector which is normal to the base ABC.

 The line through P, perpendicular to the base, cuts the base at L.

(ii) Find the equation of the line PL in vector form and use it to find the     
co-ordinates of L.

(iii) Find the co-ordinates of the point N on LP, such that L
�q

N " 
1
4L

�q
P . 

(iv) Find the angle between PA and PL.
  [MEI]

15 The position vectors of three points A, B, C on a plane ski-slope are

a " 4i � 2j � k,    b " �2i � 26j � 11k,    c " 16i � 17j � 2k,

 where the units are metres.

(i) Show that the vector 2i � 3j � 7k is perpendicular to A
�q

B and also 
perpendicular to A

�q
C. 

Hence find the equation of the plane of the ski-slope. 

The track for an overhead railway lies along DEF, where D and E have 
position vectors d " 130i � 40j � 20k and e " 90i � 20j � 15k, and F is a point 
on the ski-slope.

(ii) Find the equation of the straight line DE.

(iii) Find the position vector of the point F.

(iv) Find the length of the track DF.
  [MEI]

16 A tunnel is to be excavated through a hill. In order to define position,          
co-ordinates (x, y, z) are taken relative to an origin O such that x is the 
distance east from O, y is the distance north and z is the vertical distance 
upwards, with one unit equal to 100 m.

The tunnel starts at point A(2, 3, 5) and runs in the direction 
1
1
05−

⎛

⎝
⎜

⎞

⎠
⎟

.
.

P

A B

C

N

L
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It meets the hillside again at B. At B the side of the hill forms a plane with 
equation x � 5y � 2z " 77.

(i) Write down the equation of the line AB in the form r " u � λt.

(ii) Find the co-ordinates of B.

(iii) Find the angle which AB makes with the upward vertical.

(iv) An old tunnel through the hill has equation r " 
4
1
2

7
15
0

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟µ .

Show that the point P on AB where x " 71
2  is directly above a point Q in 

the old tunnel. Find the vertical separation PQ of the tunnels at this point.
  [MEI]

17 ABCD is a parallelogram. The co-ordinates of A, B and D are (�1, 1, 2), 
(1, 2, 0) and (1, 0, 2) respectively.

(i) Find the co-ordinates of C.

(ii) Use a scalar product to find the size of angle BAD.

(iii) Show that the vector i � 2j � 2k is perpendicular to the plane ABCD.

(iv) The diagonals AC and BD intersect at the point E. 
Find a vector equation of the straight line l through E perpendicular to 
the plane ABCD.

(v) A point F lies on l and is 3 units from A.
Find the co-ordinates of the two possible positions of F.

  [MEI]

18 The line l has equation r " 4i � 2j � k � t(2i � j � 2k). It is given that l lies in 
the plane with equation 2x � by � cz " 1, where b and c are constants.

(i) Find the values of b and c.

(ii) The point P has position vector 2j � 4k. Show that the perpendicular 
distance from P to l is �5.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2009]

19 With respect to the origin O, the points A and B have position vectors given by

O
�q

A " 2i � 2j � k        and        O
�q

B " i � 4j � 3k.

 The line l has vector equation r " 4i � 2j � 2k � s(i � 2j � k).

(i) Prove that the line l does not intersect the line through A and B.

(ii) Find the equation of the plane containing l and the point A, giving your 
answer in the form ax � by � cz " d.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 June 2005]
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20 The points A and B have position vectors, relative to the origin O, given by

O
�q

A " 
−⎛

⎝
⎜

⎞

⎠
⎟

1
3
5

        and        O
�q

B " 
3
1
4

−
−

⎛

⎝
⎜

⎞

⎠
⎟ .

The line l passes through A and is parallel to OB. The point N is the foot of 
the perpendicular from B to l.

(i) State a vector equation for the line l.

(ii) Find the position vector of N and show that BN " 3.

(iii) Find the equation of the plane containing A, B and N, giving your answer 
in the form ax � by � cz " d.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 June 2006]

21 The straight line l has equation r " i � 6j � 3k � s(i � 2j � 2k). The plane p 
has equation (r � 3i) . (2i � 3j � 6k) " 0. The line l intersects the plane p at the 
point A.

(i) Find the position vector of A.

(ii) Find the acute angle between l and p.

(iii) Find a vector equation for the line which lies in p, passes through A and 
is perpendicular to l.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 November 2007]

The intersection of two planes

If you look around you, you will find objects which can be used to represent 
planes � walls, floors, ceilings, doors, roofs, and so on. You will see that the 
intersection of two planes is a straight line.

EXAMPLE 10.15 Find l, the line of intersection of the two planes

3x � 2y � 3z " �18  and  x � 2y � z " 12.

SOLUTION 1

This solution depends on finding two points on l.

You can find one point by arbitrarily choosing to put y " 0 into the equations of 
the planes and solving simultaneously:

3x ��3z " �18
   

  x � z " 12           } � {x ��z "���6
   
x ��z "�12 } � x " 3, z " 9.

4

P

Figure 10.14

l
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So P with co-ordinates (3, 0, 9) is a point on l.

(You could run into difficulties putting y " 0 as it is possible that the line has no 
points where y " 0. In this case your simultaneous equations for x and z would  
be inconsistent; you would then choose a value for x or z instead.)

In the same way, arbitrarily choosing to put z " 1 into the equations gives

3x ��2y " �15
   
  x ��2y "�11 } � {4x " �4

   
2y " x � 11} � x " �1, y " �6

 so Q with co-ordinates (�1, �6, 1) is a point on l.

P
�q

Q "
−
−
⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜
⎞

⎠
⎟ =

−
−
−

⎛

⎝
⎜

⎞

⎠
⎟ = −

⎛

⎝
⎜
⎞

⎠
⎟

1
6
1

3
0
9

4
6
8

2
2
3
4

. 

Use 
2
3
4

⎛

⎝
⎜
⎞

⎠
⎟  as the direction vector for l.

The vector equation for l is r "
−
−
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜
⎞

⎠
⎟

1
6
1

2
3
4

t .

SOLUTION 2

In this solution the original two equations in x, y and z are solved, expressing 
each of x, y and z in terms of some parameter.

Put x " λ into {3x ��2y ��3z "��18
   

 x ��2y ��z "�12  and solve simultaneously for y and z :

{ 2y � 3z " �18 � 3λ
   ��2y � z " 12 � λ } ¡ �2z " �6 � 4λ ¡ z " 2λ � 3

so that 2y " 3z � 18 � 3λ ¡ 2y " 3(2λ � 3) � 18 � 3λ ¡ 2y " 3λ � 9 ¡ y " 3
2 λ " 9

2.

Thus the equations for l are

  x " λ

{ y " 3
2 λ � 9

2  or  

x

y

z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0

3

1

0

9
2

3
2λ .

  z " 2λ � 3

Note

This set of equations is different from but equivalent to the equations in Solution 1. 

The equivalence is most easily seen by substituting 2µ � 1 for λ, obtaining

  x " 2µ � 1

{y " 3
2(2µ � 1) � 9

2 " 3µ � 6

  z " 2(2µ � 1) � 3 " 4µ � 1

Removing factor �2 
makes the arithmetic simpler.
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The angle between two planes

The angle between two planes can be found by using the scalar product. As 
figures 10.15 and 10.16 make clear, the angle between planes π1 and π2 is the 
same as the angle between their normals, n1 and n2.

EXAMPLE 10.16 Find the acute angle between the planes π1: 2x � 3y � 5z " 8 and π2: 5x � y � 4z " 12.

SOLUTION

The planes have normals n1 " 
2
3
5

⎛

⎝
⎜
⎞

⎠
⎟  and n2 " 

5
1
4−

⎛

⎝
⎜

⎞

⎠
⎟ , so n1. n2 " 10 � 3 � 20 " �7.

The angle between the normals is θ� where

 cos θ " 
n .n
n n

1 2

1 2

7
38 42

= −
× ��

¡� θ " 100.1°      (to 1 decimal place)

Therefore the acute angle between the planes is 79.9°.

Sheaf of planes

When several planes share a common line the 
arrangement is known as a sheaf of planes 
(figure 10.17). The next example shows how 
you can find the equation of a plane which 
contains the line l common to two given 
planes, π1 and π2, without having to find the 
equation of l itself, or any points on l.

π1 π2

θ

Q2Q1

Figure 10.15

π2π1

θ

θ

Q2

µEdge RQ¶ vieZ

Q1

Figure 10.16

Figure 10.17
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EXAMPLE 10.17 Find the equation of the plane which passes through the point (1, 2, 3) and 
contains the common line of the planes π1: 2x � 2y � z � 3 " 0 and
π2: 2x � 3y � z � 13 " 0.

SOLUTION

The equation

p(2x � 2y � z � 3) � q(2x � 3y � z � 13) " 0  !1  

can be rearranged in the form n1x ��n2y ��n3z "�d, where not all of a, b, c, d are 
zero provided p and q are not both zero. Therefore equation !1  represents a 
plane. Further, any point (x, y, z) which satisfies both π1 and π2 will also satisfy 
equation !1 . Thus equation !1  represents a plane containing the common line of 
planes π1 and π2. Substituting (1, 2, 3) into !1  gives

12p � 24q " 0  �  p " �2q.

The required equation is

��2q(2x ��2y ��z ��3) ��q(2x ��3y ��z ��13) "�0
�  �q(2x ��y ��z ��7) "�0

so that the required plane has equation 2x � y � z " 7.

●? Planes π1 and π2 have equations a1x � b1y � c1z � d1 " 0 and 
a2x � b2y � c2z � d2 " 0 respectively. Plane π3 has equation 

p(a1x � b1y � c1z � d1) � q(a2x � b2y � c2z � d2) " 0.

 How is π3 related to π1 and π2 if π1 and π2 are parallel?

EXERCISE 10F 1  Find the vector equation of the line of intersection of each of these pairs of planes.

(i) x � y � 6z " 4,  5x � 2y � 3z " 13

(ii) 5x � y � z " 8,  x � 3y � z " � 4

(iii) 3x � 2y � 6z " 4,  x � 5y � 7z " 2

(iv) 5x � 2y � 3z " � 2,  3x � 3y � z " 2

2 Find the acute angle between each pair of planes in question 1.

3 Find the vector equation of the line which passes through the given point and 
which is parallel to the line of intersection of the two planes.

(i) (�2, 3, 5),  4x ��y � 3z " 5,  3x � y � 2z " 7

(ii) (4, �3, 2),  2x � 3y � 2z " 6,  4x � 3y � z " 11



V
ec

to
rs

266

P3 

10

4 Find the equation of the plane which goes through (3, 2, �2) and which 
contains the common line of x � 7y � 2z " 3  and 2x � 3y � 2z " 1 .

5 Find the equation of the plane which contains the point (1, �2, 3) and which is 
perpendicular to the common line of 5x � 3y � 4z " 2 and 2x � y � 5z " 7.

6 Find the equation of the line which goes through (4, �2, �7) and which is 
parallel to both 2x � 5y � 2z " 8 and x � 3y � 3z " 12.

7 The diagram shows the co-ordinates of the corners of parts of the roof of a 
warehouse.

 

Find the equations of both roof sections, and the vector equation of the 
line PQ. Assuming that the z axis is vertical, what angle does PQ make with 
the horizontal?

8 Test drilling in the Namibian desert has shown the existence of gold deposits 
at (400, 0, �400), (�50, 500, �250), (�200, �100, �200), where the units are in 
metres, the x axis points east, the y axis points north, and the z axis points up. 
Assume that these deposits are part of the same seam, contained in plane π.

(i) Find the equation of plane π.

(ii) Find the angle at which π is tilted to the horizontal.

The drilling positions (400, 0, 3), (�50, 500, 7), (�200, �100, 5) are on the desert 
floor. Take the desert floor as a plane, �.

(iii) Find the equation of �.

(iv) Find the equation of the line where the plane containing the gold seam 
intersects the desert floor.

(v) How far south of the origin does the line found in part (iv) pass?

�±2� 2�� ��

�12� 2�� ��

�1�� �� ��

��� �� ��
��� �� �� P

4
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9 The diagram shows an arrow embedded in a target. The line of the arrow 
passes through the point A(2, 3, 5) and has direction vector 3i � j � 2k. The 
arrow intersects the target at the point B. The plane of the target has equation  
x � 2y � 3z " 4. The units are metres.

 

(i) Write down the vector equation of the line of the arrow in the form

r " p � λq.

(ii) Find the value of λ which corresponds to B.  Hence write down the 
co-ordinates of B.

(iii) The point C is where the line of the arrow meets the ground, which is the 
plane z " 0. Find the co-ordinates of C.

(iv) The tip, T, of the arrow is one-third of the way from B to C.  Find the 
co-ordinates of T and the length of BT.

(v) Write down a normal vector to the plane of the target.  Find the acute 
angle between the arrow and this normal.

 [MEI]

10 A plane π has equation ax + by + z = d.

(i) Write down, in terms of a and b, a vector which is perpendicular to π.

 Points A(2, –1, 2), B(4, –4, 2), C(5, –6, 3) lie on π.

(ii) Write down the vectors A
�q

B and A
�q

C.

(iii) Use scalar products to obtain two equations for a and b.

(iv) Find the equation of the plane π.

(v) Find the angle which the plane π makes with the plane x = 0.

(vi) Point D is the mid-point of AC. Point E is on the line between D and B 
such that DE : EB = 1 : 2. Find the co-ordinates of E.

 [MEI]

C

T

A

B
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11  The diagram, which is not to scale, illustrates part of the roof of a building. 
Lines OA and OD are horizontal and at right angles. Lines BC and BE are 
also horizontal and at right angles. Line BC is parallel to OA and BE is 
parallel to OD.

 Axes are taken with O as origin, the x axis along OA, the y axis along OD and 
the z axis vertically upwards. The units are metres.

 Point A has the co-ordinates (50, 0, 0) and point D has the co-ordinates  
(0, 20, 0).      

 The equation of line OB is  

x
y
z

⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜
⎞

⎠
⎟λ

4
3
2

. The equation of plane CBEF is z " 3.

(i) Find the co-ordinates of B.

(ii) Verify that the equation of plane AOBC is 2y – 3z = 0.

(iii) Find the equation of plane DOBE.

(iv) Write down normal vectors for planes AOBC and DOBE. Find the angle 
between these normal vectors. Hence write down the internal angle 
between the two roof surfaces AOBC and DOBE.

 [MEI, adapted]

12 The plane p has equation 3x � 2y � 4z " 13. A second plane q is perpendicular 
to p and has equation ax � y � z " 4, where a is a constant.

(i)  Find the value of a.

(ii)  The line with equation r " j � k � λ(i � 2j � 2k) meets the plane p at the 
point A and the plane q at the point B. Find the length of AB. 

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q9 June 2010]

E

D

O

A

F

B

C

y x

z
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13  The diagram shows a set of rectangular axes Ox, Oy and Oz, and three points 

 A, B and C with position vectors O
�q

A " 
2
0
0

⎛

⎝
⎜
⎞

⎠
⎟ , O

�q
B " 

1
2
0

⎛

⎝
⎜
⎞

⎠
⎟  and O

�q
C " 

1
1
2

⎛

⎝
⎜
⎞

⎠
⎟ .

(i) Find the equation of the plane ABC, giving your answer in the form 
ax + by + cz = d.

(ii) Calculate the acute angle between the planes ABC and OAB.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q9 June 2007]

14 Two planes have equations 2x � y � 3z " 7 and x � 2y � 2z " 0.

(i) Find the acute angle between the planes.

(ii) Find a vector equation for their line of intersection.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 November 2008]

15 The plane p has equation 2x � 3y � 6z " 16. The plane q is parallel to p and 
contains the point with position vector i + 4j + 2k.

(i) Find the equation of q, giving your answer in the form ax � by � cz " d.

(ii) Calculate the perpendicular distance between p and q.

(iii) The line l is parallel to the plane p and also parallel to the plane with 
equation x � 2y � 2z " 5. Given that l passes through the origin, find a 
vector equation for l.

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q10 November 2009]

]

y

A

2

%

C

x

KEY POINTS

1 The position vector O
�q

P of a point P is the vector joining the origin to P.

2 The vector A
�q

B is b – a, where a and b are the position vectors of A and B.

3 The vector r often denotes the position vector of a general point.

4 The vector equation of the line through A with direction vector u is given by

r " a � λu.
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5 The vector equation of the line through points A and B is given by

r " O
�q

A � λA
�q

B 
 " a � λ(b � a)
 " (1 � λ)a � λb.

6 The vector equation of the line through (a1, a2, a3) in the direction 
u
u
u

1

2

3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  is

r = 
a
a
a

u
u
u

1

2

3

1

2

3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟λ .

7 The angle between two vectors, a and b, is given by θ in

cos θ = 
a . b
a b

     

where    a . b = a1b1 + a2b2  (in two dimensions)

 = a1b1 + a2b2 + a3b3  (in three dimensions).

8 The cartesian equation of a plane perpendicular to the vector n " 
n
n
n

1

2

3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  is 

n1x + n2y + n3z = d.

9 The vector equation of the plane through the points A, B and C is

r = O
�q

A + λA
�q

B + µA
�q

C.

10 The equation of the plane through the point with position vector a, and 
perpendicular to n, is given by (r – a). n " 0.

11 The distance of the point (α, β, γ) from the plane n1x + n2y + n3z = d is

n n n d

n n n

1 2 3

1
2

2
2

3
2

α β γ� �

� �

–
.

If the plane is written ax � by � cz " d, the formula for the distance is

a b c d

a b c

α β γ+ +
+ +

–
2 2 2

12 The angle between a line and a plane is found by first considering the 
angle between the line and a normal to the plane.

13  To find the equation of l, the line of intersection of the planes

a1x + b1y + c1z = d1    and    a2x + b2y + c2z = d2

 ● find a point P on l  by choosing a value for one of x, y, or z, substituting
this into both equations, and then solving simultaneously to find the  
other two variables;

 ● then write down the vector equation of  l.

14  The angle between two planes is the same as the angle between their normals.
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Complex numbers

… that wonder of analysis, that portent of the ideal world, that 
amphibian between being and not-being, which we call the imaginary 
root of negative unity. 

Leibniz, 1702

The growth of the number system

The number system we use today has taken thousands of years to develop. In 
primitive societies all that are needed are the counting numbers, 1, 2, 3, … (or 
even just the first few of these). 

The concept of a fraction was first recorded in a systematic way in an Egyptian 
papyrus of about 1650 BC. By 500 BC the Greeks had developed ways of 
calculating with whole numbers and their ratios (which accounts for calling 
fractions rational numbers). The followers of Pythagoras believed that everything 
in geometry and in applications of mathematics could be explained in terms of 
rational numbers.

It came as a great shock, therefore, when one of them proved that 2 was not 
a rational number. However, Greek thinkers gradually came to terms with the 
existence of such irrational numbers, and by 370 BC Eudoxus had devised a very 
careful theory of proportion which included both rational and irrational numbers.

It took about another thousand years for the next major development, when 
the Hindu mathematician Brahmagupta (in about AD 630) described negative 
numbers and gave the rules for dealing with negative signs. Surprisingly, the first 
use of a symbol for zero came even later, in AD 876. This was the final element 
needed to complete the set of real numbers, consisting of positive and negative 
rational and irrational numbers and zero. 

Figure 11.1 (overleaf) shows the relationships between the different types 
of numbers.

271

11
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ACTIVITY 11.1 Copy figure 11.1 and write the following numbers in the correct positions.

3   π   355
113

   �1   �1.4142   � 2

Draw also a real number line and mark the same numbers on it.

The number system expanded in this way because people wanted to increase the 
range of problems they could tackle. This can be illustrated in terms of the sorts 
of equation that can be solved at each stage, although of course the standard 
algebraic way of writing these is relatively modern.

ACTIVITY 11.2 For each of these equations, make up a simple problem that would lead to the 
equation and say what sort of number is needed to solve the equation.

(i) x � 7 " 10 (ii) 7x " 10
(iii) x2 " 10 (iv) x � 10 " 7
(v) x2 � 7x " 0 (vi) x2 � 10 " 0

You will have hit a snag with equation (vi). Since the square of every real number 
is positive or zero, there is no real number with a square of �10. This is a simple 
example of a quadratic equation with no real roots. The existence of such 
equations was recognised and accepted for hundreds of years, just as the Greeks 
had accepted that x � 10 " 7 had no solution.

Then two 16th century Italians, Tartaglia and Cardano, found methods of solving 
cubic and quartic (fourth degree) equations which forced mathematicians to take 
seriously the square roots of negative numbers. This required a further extension 
of the number system, to produce what are called complex numbers.

Complex numbers were regarded with great suspicion for many years. Descartes 
called them ‘imaginary’, Newton called them ‘impossible’, and Leibniz’s 
mystification has already been quoted. But complex numbers turned out to be 
very useful, and had become accepted as an essential tool by the time Gauss first 
gave them a firm logical basis in 1831.

Negative integersPositive integers

Rational numbers

zero

Irrational numbers

Real numbers

Figure 11.1
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Working with complex numbers

Faced with the problem of wanting the square root of a negative number, we 
make the following Bold Hypothesis.

The real number system can be extended by including a new number,  
denoted by i, which combines with itself and the real numbers according to 
the usual laws of algebra, but which has the additional property that i2 " �1.

The original notation for i was ι, the Greek letter iota. The letter j is also 
commonly used instead of i.

The first thing to note is that we do not need further symbols for other square 
roots. For example, since �196 " 196 w (�1) " 142 w i2, we see that �196 has two 
square roots, ±14i. The following example uses this idea to solve a quadratic 
equation with no real roots.

EXAMPLE 11.1 Solve the equation z2 � 6z � 58 " 0, and check the roots.

(We use the letter z for the variable here because we want to keep x and y to stand 
for real numbers.)

SOLUTION

Using the quadratic formula:

z " 6 6 4 58
2

2± − ×

 " 
6 196

2
± −

 " 
6 14

2
± i

 " 3 ± 7i

To check: 

  z " 3 � 7i ¡�z2 � 6z � 58 " (3 � 7i)2 � 6(3 � 7i) � 58

   " 9 � 42i � 49i2 � 18 � 42i � 58 

   " 9 � 42i � 49 � 18 � 42i � 58

   " 0

ACTIVITY 11.3 Check the other root, z " 3 � 7i.

A number z of the form x � iy, where x and y are real, is called a complex number. 
x is called the real part of the complex number, denoted by Re(z), and y is called 
the imaginary part, denoted by Im(z). So if, for example, z " 3 � 7i then Re(z) " 3 
and Im(z) " �7. Notice in particular that the imaginary part is real!

i2 " �1

Notice that here 0 
means 0 � 0i.
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In Example 11.1 you did some simple calculations with complex numbers. 
The general methods for addition, subtraction and multiplication are similarly 
straightforward.

Addition: add the real parts and add the imaginary parts. 

(x � iy) � (u � iv) " (x � u) � i(y � v)

Subtraction: subtract the real parts and subtract the imaginary parts.

(x � iy) � (u � iv) " (x � u) � i(y � v)

Multiplication: multiply out the brackets in the usual way and simplify, 
remembering that i2 " �1.

(x � iy)(u � iv) " xu � ixv  � iyu � i2yv
 " (xu � yv) � i(xv � yu)

Division of complex numbers is dealt with later in the chapter.

●? What are the values of i3, i4, i5?

 Explain how you would work out the value of in for any positive integer value of n.

Complex conjugates

The complex number x � iy is called the complex conjugate, or just the 
conjugate, of x � iy. Simarly x � iy is the complex conjugate of x � iy. x � iy 
and x � iy are a conjugate pair.The complex conjugate of z is denoted by z*. 
If a polynomial equation, such as a quadratic, has real coefficients, then any 
complex roots will be conjugate pairs. This is the case in Example 11.1. If, 
however, the coefficients are not all real, this is no longer the case.

You can solve quadratic equations with complex coefficients in the same way 
as an ordinary quadratic, either by completing the square or by using the 
quadratic formula. This is shown in the next example.
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EXAMPLE 11.2 Solve z2 � 4iz � 13 " 0.

SOLUTION 

Substitute a " 1, b " �4i and c " �13 into the quadratic formula.

z b b ac
a

= − ± −

= ± − − × × −

= ± − +

=

2

2

4
2

4 4 4 1 13
2

4 16 52
2

4

i i

i

( ) ( )

ii

i

i

±

= ±

= ±

36
2

4 6
2

2 3

 

So the roots are 3 + 2i and –3 + 2i.

ACTIVITY 11.4 (i) Let z " 3 � 5i and w " 1 � 2i.
Find the following. 

(a) z � z* (b) w � w* (c) zz* (d) ww*

What do you notice about your answers?

(ii)  Let z " x � iy. 
Show that z � z* and zz* are real for any values of x and y. 

EXERCISE 11A 1   Express the following in the form x � iy .

(i) (8 � 6i) � (6 � 4i) (ii) (9 � 3i) � (�4 � 5i)
(iii) (2 � 7i) � (5 � 3i) (iv) (5 � i) � (6 � 2i)
(v) 3(4 � 6i) � 9(1 � 2i) (vi) 3i(7 � 4i)
(vii) (9 � 2i)(1 � 3i) (viii) (4 � i)(3 � 2i)
(ix) (7 � 3i)2 (x) (8 � 6i)(8 � 6i)
(xi) (1 � 2i)(3 � 4i)(5 � 6i) (xii) (3 � 2i)3

2  Solve each of the following equations, and check the roots in each case.

 (i) z2 � 2z � 2 " 0 (ii) z2 � 2z � 5 " 0
(iii) z2 � 4z � 13 " 0 (iv) z2 � 6z � 34 " 0
(v) 4z2 � 4z � 17 " 0 (vi) z2 � 4z � 6 " 0

3 Solve each of the following equations.

(i) z2 � 4iz � 4 " 0 (ii) z2 � 2iz � 15 " 0

(iii) z2 � 2iz � 2 " 0 (iv) z2 � 6iz � 13 " 0

(v) z2 � 8iz � 17 " 0 (vi) z2 � iz � 6 " 0
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4    Given that z " 2 � 3i and w " 6 � 4i, find the following.

(i) Re(z) (ii) Im(w) 
(iii) z* (iv) w*
(v) z* � w* (vi) z* � w*
(vii) Im(z � z*) (viii) Re(w � w*)
(ix) zz* � ww* (x) (z3)*
(xi) (z*)3 (xii)  zw* � z*w

5 Let z " x � iy.
 Show that (z*)* " z.

6 Let z1 " x1 � iy1 and z2 " x2 � iy2 .
 Show that (z1 � z2)* " z1* � z2*.

Division of complex numbers

Before tackling the slightly complicated problem of dividing by a complex 
number, you need to know what is meant by equality of complex numbers.

Two complex numbers z " x � iy and w " u � iv are equal if both x " u and y " v. 
If u | x or v | y, or both, then z and w are not equal.

You may feel that this is making a fuss about something which is obvious. 
However, think about the similar question of the equality of rational numbers. 

The rational numbers x
y

 and u
v  

are equal if x " u and y " v.

●? Is it possible for the rational numbers x
y

 and u
v  

to be equal if u  | x and v  | y?

So for two complex numbers to be equal, the real parts must be equal and the 
imaginary parts must be equal. When we use this result we say that we are 
equating real and imaginary parts.

Equating real and imaginary parts is a very useful method which often yields  
‘two for the price of one’ when working with complex numbers. The following 
example illustrates this.

EXAMPLE 11.3 Find real numbers p and q such that p � qi " 
1

3 5� i .

SOLUTION

You need to find real numbers p and q such that

 (p � iq)(3 � 5i) " 1.

Expanding gives 

 3p � 5q � i(5p � 3q) " 1.
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Equating real and imaginary parts gives

Real: 3p � 5q " 1
Imaginary: 5p � 3q " 0

These simultaneous equations give p " 3
34, q " � 5

34 and so

1
3 5

3
34

5
34+ = −

i
i

ACTIVITY 11.5 By writing 1
x y� i  

" p � iq, show that 1
2 2x y

x y
x y+ = −

+i
i .

This result shows that there is an easier way to find the reciprocal of a complex 
number. First, notice that 

(x � iy)(x � iy) " x2 � i2y2

 " x2 � y2

which is real.

So to find the reciprocal of a complex number you multiply numerator and 
denominator by the complex conjugate of the denominator.

EXAMPLE 11.4 Find the real and imaginary parts of 
1

5 2� i .

SOLUTION

Multiply numerator and denominator by 5 � 2i.

1
5 2

5 2
5 2 5 2+ = −
+i

i
i i( )( – )

 = −
+

5 2
25 4

i

 = −5 2
29

i

so the real part is 5
29 and the imaginary part is �� 2

29.

Note

You may have noticed that this process is very similar to the process of rationalising 

a denominator. To make the denominator of 1
3 2�

 rational you have to multiply the 

numerator and denominator by 3 � 2.

Similarly, division of complex numbers is carried out by multiplying both 
numerator and denominator by the conjugate of the denominator, as in the  
next example.

5 – 2i is the conjugate of 
the denominator, 5 + 2i.
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EXAMPLE 11.5 Express 9 4
2 3
−
+

i
i
 as a complex number in the form x + iy.

SOLUTION

9 4
2 3

9 4
2 3

2 3
2 3

18 27 8 12
2 3

2

2 2

−
+ = −

+ × −
−

= − − +
+

=

i
i

i
i

i
i

i i i

66 35
13

6
13

35
13

−

= −

i

i

The square root of a complex number

The next example shows you how to find the square root of a complex number.

EXAMPLE 11.6 Find the two square roots of 8 + 6i.

SOLUTION 

Let (x + iy)2 = 8 + 6i

¡  x2 + 2ixy – y2 = 8 + 6i 

Equating the real and imaginary parts gives: 

Real: x2 – y2 = 8 !1 
Imaginary:       2xy = 6 !2 

Rearranging !2  gives

                                  
y

x
" 3

 
!3 

Substituting !3  into !1  gives 

 
x

x

x x

x x

x x

2
2

4 2

4 2

2 2

9 8

9 8

8 9 0

9 1 0

− =

− =
− − =

− + =( )( )

¡ x2 " �1 which has no real roots

or x2 " 9 ¡ x " ±3.

When x = 3, y = 1

When x = –3, y = –1

So the square roots of 8 + 6i are 3 + i and –3 – i.

+ i2y2 = –y2

This is a 
quadratic in x2.

Remember that x 
and y are both real 

numbers.
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●? What are the values of  1 1 1

2 3i i
and

i
, ? 

 Explain how you would work out the value of 1
in

 for any positive integer value of n.

 The collapse of a Bold Hypothesis

You have just avoided a mathematical inconvenience (that –1 has no real square 
root) by introducing a new mathematical object, i, which has the property that 
you want: i2 = –1. 

What happens if you try the same approach to get rid of the equally inconvenient 
ban on dividing by zero? The problem here is that there is no real number 
equal to 1 { 0. So try making the Bold Hypothesis that you can introduce a new 
mathematical object which equals 1 { 0 but otherwise behaves like a real number. 
Denote this new object by h.

Then 1 { 0 = h, and so 1 = 0 w h.

But then you soon meet a contradiction:

 2 w 0 = 3 w 0
¡� (2 w 0) w h�= (3 w 0) w�h
¡� 2 w (0 w h) = 3 w (0 w h)
¡� 2 w 1 = 3 w 1
¡� 2 = 3  which is impossible.

 So this Bold Hypothesis quickly leads to trouble. How can you be sure that the 
same will never happen with complex numbers? For the moment you will just 
have to take on trust that there is an answer, and that all is well. 

EXERCISE 11B 1  Express these complex numbers in the form x � iy.

 (i) 
1

3 � i
 (ii) 

1
6 � i

 (iii) 
5

6 2
i

i�  

 (iv) 
7 5
6 2
+
−

i
i

 (v) 
3 2
1
�
�

i
i

 (vi) 
47 23

6
−
+

i
i

 (vii) 
2 3
3 2
−
+

i
i

 (viii) 
5 3
4 3
−
+

i
i

 (ix) 
6
2 5
+
−

i
i

 

 (x) 
12 8
2 2

2
−
+( )

i
i

2 Find real numbers a and b with a > 0 such that

(i) (a � ib)2 " 21 � 20i (ii) (a � ib)2 " �40 � 42i
(iii) (a � ib)2 " �5 � 12i (iv) (a � ib)2 " �9 � 40i
(v) (a � ib)2 " 1 � 1.875i (vi) (a � ib)2 " i.

!
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3  Find real numbers a and b such that

a b
3 1 2� � �i i

 " 1 � i.

4 Solve these equations.

(i) (1 � i)z " 3 � i

(ii) (3 � 4i)(z � 1) " 10 � 5i

(iii) (2 � i)(z � 7 � 3i) " 15 � 10i 

(iv) (3 � 5i)(z � 2 � 5i) " 6 � 3i

5 Find all the complex numbers z for which z2 " 2z*.

6 For z " x � iy , find 1 1
z zz

�
*
 in terms of x and y.

7 Show that

(i) Re(z) " z zz�
2

*

(ii) Im(z) " 
z zz�

2i
*.

8 (i) Expand and simplify (a � ib)3. 
(ii) Deduce that if (a � ib)3 is real then either b " 0 or b2 " 3a2.
(iii) Hence find all the complex numbers z for which z3 " 1.

9 (i) Expand and simplify (z � α)(z � β). 
Deduce that the quadratic equation with roots α and β is

z2 � (α � β)z � αβ " 0, 

 that is: 

z2 � (sum of roots)z � product of roots " 0.

(ii)  Using the result from part (i), find quadratic equations in the form 
az2 � bz � c " 0 with the following roots.

(a) 7 � 4i, 7 � 4i

(b) 
5
3
i , ��5

3
i

(c) �2 � 8i, �2 � 8i

(d) 2 � i, 3 � 2i

10  Find the two square roots of each of these.

(i) –9

(ii) 3 + 4i

(iii) –16 + 30i

(iv) –7 – 24i

(v) 21 – 20i

(vi)  –5 – 12i
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Representing complex numbers geometrically

Since each complex number x � iy 
can be defined by the ordered pair 
of real numbers (x, y), it is natural 
to represent x � iy by the point with 
cartesian co-ordinates (x, y).

For example, in figure 11.2,

2 � 3i is represented by (2, 3)
�5 � 4i is represented by  (�5, �4)
2i is represented by  (0, 2)
7 is represented by  (7, 0).

All real numbers are represented by points on the x axis, which is therefore 
called the real axis. Pure imaginary numbers (of the form 0 � iy) give points on 
the y axis, which is called the imaginary axis. It is useful to label these Re and 
Im respectively. This geometrical illustration of complex numbers is called the 
complex plane or the Argand diagram after Jean-Robert Argand (1768�1822), a 
self-taught Swiss book-keeper who published an account of it in 1806.

ACTIVITY 11.6 (i)  Copy figure 11.2. 
For each of the four given points z mark also the point �z. 
Describe the geometrical transformation which maps the point representing 
z  to the point representing �z.

(ii)  For each of the points z mark the point z*, the complex conjugate of z. 
Describe the geometrical transformation which maps the point representing 
z to the point representing z*.

You will have seen in this activity that the points representing z and �z have half-
turn symmetry about the origin, and that the points representing z and z* are 
reflections of each other in the real axis.

●? How would you describe points that are reflections of each other in the 
imaginary axis?

Representing the sum and difference of complex numbers

Several mathematicians before Argand had used the complex plane representation. 
In particular, a Norwegian surveyor, Caspar Wessel (1745�1818), wrote a paper in 
1797 (largely ignored until it was republished in French a century later) in which

the complex number x � iy is represented by the position vector x
y

⎛
⎝⎜

⎞
⎠⎟ , as shown in

figure 11.3 (overleaf).

2 4 6 8O–4 –2

4

2

–4

–2

5e

Im

2i
2 � 3i

±� ± �i

Figure 11.2
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The advantage of this is that the addition of complex numbers can then be shown 
by the addition of the corresponding vectors.

x
y

x
y

x x
y y

1

1

2

2

1 2

1 2

⎛
⎝

⎞
⎠ +

⎛
⎝

⎞
⎠ = +

+
⎛
⎝

⎞
⎠

In an Argand diagram the position vectors 
representing z1 and z2 form two sides of a 
parallelogram, the diagonal of which is the  
vector z1 � z2 (see figure 11.4).

You can also represent z by any other directed line 

segment with components x
y

⎛
⎝

⎞
⎠ , not anchored at the 

origin as a position vector. Then addition can be 
shown as a triangle of vectors (see figure 11.5).

If you draw the other diagonal of the parallelogram, 
and let it represent the complex number w 
(see figure 11.6), then

z2 � w " z1 ¡ w " z1 � z2.

This gives a useful illustration of subtraction: the
complex number z1 � z2 is represented by the 
vector from the point representing z2 to the point 
representing z1, as shown in figure 11.7. Notice the 
order of the points: the vector z1 � z2 starts at the 
point z2 and goes to the point z1.

O 5e

Im

]   x � iy

Figure 11.3

O 5e

Im

]2

]1

]1 � ]2

Figure 11.4

O 5e

Im

]2

]1

]1 � ]2

Figure 11.5

O 5e

Im

]2

]1

Z

Z� �]1�±�]2

Figure 11.6

O 5e

Im

]2

]1

]1 ±�]2

Figure 11.7
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ACTIVITY 11.7 (i) Draw a diagram to illustrate z2 � z1.

(ii) Draw a diagram to illustrate that z1 � z2 " z1 � (�z2). 
 Show that z1 � (�z2) gives the same vector, z1 � z2 as before, but represented   
 by a line segment in a different place.

The modulus of a complex number

Figure 11.8 shows the point representing z " x � iy on an Argand diagram. 

Using Pythagoras’ theorem, you can see that the distance of this point from the

origin is x y2 2� . This distance is called the modulus of z, and is denoted by a�z a.

So for the complex number z " x � iy, a�z a " x y2 2� . 

If z is real, z " x say, then a��z  a " x2, which is the absolute value of x, i.e. a���x  a. So 
the use of the modulus sign with complex numbers fits with its previous meaning 
for real numbers.

EXERCISE 11C 1   Represent each of the following complex numbers on a single Argand 
diagram, and find the modulus of each complex number.

(i) 3 � 2i (ii) 4i (iii) �5 � i
(iv) �2 (v) �6 � 5i (vi) 4 � 3i

2 Given that z " 2 � 4i, represent the following by points on a single Argand 
diagram.

(i) z (ii) �z (iii) z*
(iv) �z* (v) iz (vi) �iz 
(vii) iz* (viii) (iz)*

3 Given that z " 10 � 5i and w " 1 � 2i, represent the following complex 
numbers on an Argand diagram.

(i) z (ii) w (iii) z � w 
(iv) z � w (v) w � z 

O

Im

Re

y

x + iy

x

Figure 11.8
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4     Given that z " 3 � 4i and w " 5 � 12i, find the following.

(i) a��z  a (ii) a��w  a (iii) a��zw  a 

(iv) a�� zw   a (v) a��wz   a
 What do you notice?

5 Let z " 1 � i.

(i) Find zn and azn a for n " �1, 0, 1, 2, 3, 4, 5. 

(ii) Plot each of the points zn from part (i) on a single Argand diagram. 
Join each point to its predecessor and to the origin.

(iii) What do you notice?

6 Give a geometrical proof that (�z)* " �(z*).

Sets of points in an Argand diagram

●? In the last section, you saw that a���z   a is the distance of the point representing z 
from the origin in the Argand diagram.

 What do you think that a����z2 � z1  a represents?

If z1 " x1 � iy1 and z2 " x2 � iy2, then z2 � z1 " x2 � x1 � i(y2 � y1).

So a���z2 � z1  a " x x y y2 1
2

2 1
2−( ) + −( ) .

Figure 11.9 shows an Argand diagram with the points representing the complex 
numbers z1 " x1 � iy1 and z2 " x2 � iy2 marked.

O

Im

Re

x2 + iy  2

y2 – y1

x2 – x1

x1 + i  y 1

Figure 11.9
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Using Pythagoras’ theorem, you can see that the distance between z1 and z2 is 

given by ( ) ( )x x y y2 1
2

2 1
2− + − .

So a����z2 � z1 a is the distance between the points z1 and z2.

This is the key to solving many questions about sets of points in an Argand 
diagram, as in the following examples.

EXAMPLE 11.7 Draw an Argand diagram showing the set of points z for which a���z  � 3 � 4i a�" 5.

SOLUTION

a���z  � 3 � 4i a�can be written as a��z  � (3 � 4i) a, and this is the distance from the point 
3 � 4i to the point z. 

This equals 5 if the point z lies on the circle with centre 3 � 4i and radius 5 (see 
figure 11.10).

●? How would you show the sets of points for which

(i) a��z  � 3 � 4i a ! 5 

(ii) a� �z  � 3 � 4i a " 5 

 (iii) a���z  � 3 � 4i a # 5?

EXAMPLE 11.8 Draw an Argand diagram showing the set of points z for which 
a��z  � 3 � 4i a ! a��z  � 1 � 2i a.

SOLUTION

The condition can be written as a��z  � (3 � 4i) a ! a��z  � (�1 � 2i) a.

O

Im

Re

3 + 4i

Figure 11.10
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a��z  � (3 � 4i) a is the distance of point z from the point 3 � 4i, point A in figure 
11.11, and a��z  � (�1 � 2i) a  is the distance of point z from the point �1 � 2i, point 
B in figure 11.11.

These distances are equal if z is on the perpendicular bisector of AB.

So the given condition holds if z is on this bisector or in the half plane on the side 
of it containing A, shown shaded in figure 11.11.

●? How would you show the sets of points for which

(i) a��z  � 3 � 4i a " a��z  � 1 � 2i a
(ii) a��z  � 3 � 4i a " a��z  � 1 � 2i a

 (iii) a��z  � 3 � 4i a $ a��z  � 1 � 2i a?

EXERCISE 11D 1   For each of parts (i) to (viii), draw an Argand diagram showing the set of points 
z for which the given condition is true.

(i)  a���z  a�" 2 (ii) a��z  � 4 a ! 3

(iii)  a���z  � 5i a " 6 (iv) a��z  � 3 � 4i a " 5

(v)  a���6 � i � z a # 2 (vi) a��z  � 2 � 4i a " 0

(vii)  2 ! a��z  � 1 � i a ! 3 (viii) Re(z) " �2

2 Draw an Argand diagram showing the set of points z for which a��z  � 12 � 5i a�! 7. 
Use the diagram to prove that, for these z, 6 ! a��z  a ! 20.

3 (i) On an Argand diagram, show the region R for which a��z  � 5 � 4i a ! 3.
(ii) Find the greatest and least values of  a��z  � 3 � 2i a  in the region R. 

4 By using an Argand diagram see if it is possible to find values of z for which  
a��z  � 2 � i a�#���  and a��z  � 4 � 2i a ! 2 simultaneously.

O

Im

A 3 + 4i

B
–1 + 2i

Re

Figure 11.11
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5    For each of parts (i) to (iv), draw an Argand diagram showing the set of points z 
for which the given condition is true.

(i)� a���z  a " a���z  � 4 a (ii) a���z a # a���z � 2i a 
(iii) a��z  � 1 � i a " a���z � 1 � i a (iv) a���z � 5 � 7i a ! a���z � 2 � 6i a

The modulus−argument form of complex numbers

The position of the point z in an Argand diagram can be described by means of 
the length of the line connecting this point to the origin, and the angle which this 
line makes with the positive real axis (see figure 11.12).

The distance r is of course a��z a , the modulus of z as defined on page 283. 

The angle θ is slightly more complicated: it is measured anticlockwise from the 
positive real axis, normally in radians. However, it is not uniquely defined since 
adding any multiple of 2π to θ gives the same direction. To avoid confusion, it is 
usual to choose that value of θ for which �π " θ ! π. This is called the principal 
argument of z, denoted by arg z. Then every complex number except zero has a 
unique principal argument. The argument of zero is undefined.

For example, with reference to figure 11.13,

arg(�4) " π

arg(�2i) " �U
2

arg(1.5) " 0

arg(�3 � 3i) " 3
4
U

O

θ

Im

z

Re

r

Figure 11.12

When describing complex 
numbers, it is usual to give 

the angle θ in radians.

Remember that  
π radians " 180°.

1.50–4 –2

–2i

5e

Im

±3 � 3i

Figure 11.13
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●? Without using your calculator, state the values of the following.

 (i) arg i (ii) arg(�4 � 4i) (iii) arg(2 � 2i)

You can see from figure 11.14 that

x " r cos θ y " r sin θ

r " x y2 2�  tan θ " 
y
x

and the same relations hold in the other quadrants too.

Since x " r cos θ and y " r sinθ, we can write the complex number z " x � iy in the 
form

 z " r (cos θ � i sinθ).

This is called the modulus�argument or polar form.

ACTIVITY 11.8 (i) Set your calculator to degrees and use it to find the following.
(a)  tan�1 1 (b) tan�1 2 (c) tan�1 100
(d) tan�1(�2) (e) tan�1(�50) (f) tan�1(�200)

What are the largest and smallest possible values, in degrees, of tan�1
 x?

(ii)  Now set your calculator to radians. 
Find tan�1

 x for some different values of x.
 What are the largest and smallest possible values, in radians, of tan�1 x?

If you know the modulus and argument of a complex number, it is easy to use 
the relations x " r cos θ and y " r sin θ to find the real and imaginary parts of the 
complex number.

Similarly, if you know the real and imaginary parts, you can find the modulus

and argument of the complex number using the relations r " x y2 2�  and 

tan θ " 
y
x

, but you do have to be quite careful in finding the argument. It is 

tempting to say that θ " tan�1
 

y
x

⎛
⎝⎜

⎞
⎠⎟ , but, as you saw in the last activity, this gives 

a value between ��U
2

 and 
U
2 , which is correct only if z is in the first or fourth 

quadrants.

O

θ

Im

y

Re

r

x

Figure 11.14
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For example, suppose that the point z1 " 2 � 3i has argument θ1, and the point 

z2 " �2 � 3i has argument θ2. It is true to say that tan θ1 " tan θ2 " ��32 . In the case of 

z1, which is in the fourth quadrant, θ1 is correctly given by tan�1 −( )3
2  ~ �0.98 rad

(~ �56°). However, in the case of z2, which is in the second quadrant, θ2 is given 

by −( )3
2  � π ~ 2.16 rad (~ 124°). These two points are illustrated in figure 11.15.

Figure 11.16 shows the values of the argument in each quadrant. It is wise always 
to draw a sketch diagram when finding the argument of a complex number.

ACTIVITY 11.9 Mark the points 1 � i, 1 � i, �1 � i, �1 � i on an Argand diagram. 
Find arg z for each of these, and check that your answers are consistent with 
figure 11.16.

Note

The modulus�argument form of a complex number is also called the polar form, as 

the modulus of a complex number is its distance from the origin, sometimes called 

the pole. 

20–2

–2

5e

Im
]2

]1

θ2

θ1

Figure 11.15

arg –

ar
U

U

U

g +

arg –

arg +

+

–

Figure 11.16

arg z = tan�1 (y
x ) + π arg z = tan�1 (y

x )
arg z = tan�1 (y

x ) – π  arg z = tan�1 (y
x )
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ACTIVITY 11.10 Most calculators can convert from (x, y) to (r, θ) (called rectangular to polar, and 
often shown as R q P) and from (r, θ) to (x, y) (polar to rectangular, P q R).
Find out how to use these facilities on your calculator, and compare with other 
available types of calculator. 

 Does your calculator always give the correct θ, or do you sometimes have to add 
or subtract π (or 180°)?

A complex number in polar form must be given in the form z " r(cos θ � i sin θ), 
not, for example, in the form z " r(cos θ � i sin θ). The value of r must also be
positive. So, for example, the complex number �2(cos α � i sin α) is not in polar 
form. However, by using some of the relationships

cos (π � α) " �cos α sin (π � α) " sin α
cos (α � π) " �cos α sin (α � π) " �sin α
cos (�α) " cos α sin (�α) " �sin α

you can rewrite the complex number, for example

�2(cos α � i sin α) " 2(�cos α � i sin α)
 " 2(cos (α � π) � i sin (α � π)).

This is now written correctly in polar form. The modulus is 2 and the argument 
is α � π.

●? How would you rewrite the following in polar form? 

 (i) �2(cos α � i sin α) (ii) 2(cos α � i sin α)

When you use the polar form of a complex number, remember to give the 
argument in radians, and to use a simple rational multiple of π where possible. 

ACTIVITY 11.11 Copy and complete this table. 

Give your answers in terms of 2  or 3  where appropriate, rather than as 
decimals. You may find figure 11.17 helpful.

π
4

π
6

π
3

tan

sin

cos
1 1

2 2

1

1

Figure 11.17
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EXAMPLE 11.9 Write the following complex numbers in polar form.

(i) 4 � 3i (ii) �1 � i (iii) �1 � 3i

SOLUTION

(i) x " 4, y " 3

Modulus " 3 4 52 2+ =

Since 4 � 3i lies in the first quadrant, the argument " tan�1 34.

4 � 3i " 5(cos α � i sin α), where α " tan�1
 
3
4 ~ 0.644 radians

(ii) x " �1, y " 1

 Modulus " 1 1 22 2+ =

 Since �1 � i lies in the second quadrant, 

argument " tan�1(�1) � π 

  " �π π π
4

3
4

+ =

� �1 � i " 2 3
4

3
4

cos sinπ π+( )i

(iii) x " �1, y " � 3

  Modulus " 1 3�  " 2

  Since �1 � 3 i lies in the third quadrant, 

argument " tan�1
 3 − π

  " π π π
3

2
3

− = −

���1 � 3 2 2
3

2
3

i i= −( ) + −( )( )cos sinπ π

EXERCISE 11E 1  Write down the values of the modulus and the principal argument of each of   
these complex numbers.

(i) 8
5 5

cos π π+( )i sin  (ii) 
cos . sin .2 3 2 3

4
� i

(iii) 4
3 3

cos π π−( )i sin  (iv) �3(cos (�3) � i sin (�3))
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2   For each complex number, find the modulus and principal argument, and 
hence write the complex number in polar form.  
Give the argument in radians, either as a simple rational multiple of π or 
correct to 3 decimal places.

(i) 1 (ii) �2 (iii) 3i

(iv) �4i (v) 1 � i (vi) �5 � 5i

(vii) 1 � 3 i (viii) 6 3 � 6i (ix) 3 � 4i

(x) �12 � 5i (xi) 4 � 7i (xii) �58 � 93i

3 Write each complex number with the given modulus and argument in the 
form x � iy, giving surds in your answer where appropriate.

(i) a��z  a " 2, arg z " U
2

 (ii) a��z  a " 3, arg z " U
3

(iii) a��z  a " 7, arg z " 5
6
U  (iv) a��z  a " 1, arg z " ��U

4

(v) a��z  a " 5, arg z " � 2
3
U  (vi) a��z  a " 6, arg z " �2 

4 Given that arg(5 � 2i) " α, find the principal argument of each of the following 
in terms of α.

(i) �5 � 2i (ii) 5 � 2i (iii) �5 � 2i
(iv) 2 � 5i (v) �2 � 5i

5 The variable complex number z is given by

z = 1 + cos 2θ + i sin 2θ,

 where θ takes all values in the interval �1
2U " θ " 12U.

(i)  Show that the modulus of z is 2 cos θ and the argument of z is θ.

(ii)  Prove that the real part of 1
z

 is constant.

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q8 June 2010]

6 The variable complex number z is given by

z = 2 cos θ + i(1 – 2 sin θ),

 where θ takes all values in the interval �U " θ ! U.

(i) Show that �a��z � i  a " 2, for all values of θ. Hence sketch, in an Argand 
diagram, the locus of the point representing z.

(ii) Prove that the real part of 1
2z + − i is constant for �U " θ " U.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q5 June 2008]
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7  (i) The complex number z is given by z = 4 3
1 2

�
�

i
i
.

(a) Express z in the form x + iy, where x and y are real.

(b) Find the modulus and argument of z.

(ii) Find the two square roots of the complex number 5 – 12i, giving your 
answers in the form x + iy, where x and y are real.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q8 November 2007]

8 The complex number 2 + i is denoted by u. Its complex conjugate is denoted 
by u*.

(i) Show, on a sketch of an Argand diagram with origin O, the points A, B 
and C representing the complex numbers u, u* and u + u* respectively. 
Describe in geometrical terms the relationship between the four points O, 
A, B and C.

(ii) Express u
ui*

 in the form x + iy, where x and y are real.

(iii) By considering the argument of u
ui*

, or otherwise, prove that

tan–1 4
3

1
2( ) ( ) = 2 tan–14

3
1
2( ) ( ).

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 June 2006]

Sets of points using the polar form

●? You already know that arg z gives the angle between the line connecting the point 
z with the origin and the real axis.

 What do you think arg (z2 � z1) represents?

If  z1 " x1 � iy1 and z2 " x2 � iy2, then z2 � z1 " x2 � x1 � i(y2 � y1).

arg (z2 � z1) " tan�1 
y y
x x

2 1

2 1

�
�  

Figure 11.18 shows an Argand diagram with
the points representing the complex numbers 
z1 " x1 � iy1  and z2 " x2 � iy2 marked.

The angle between the line joining z1 and z2 
and a line parallel to the real axis is given by

  tan�1
 

y y
x x

2 1

2 1

�
� .

So arg (z1 � z2) is the angle between the 
line joining z1 and z2 and a line parallel to the real axis.

O

Im

Re

x2 + iy 2

y2 – y1

x2 – x1

x1 + iy 1

Figure 11.18
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EXAMPLE 11.10 Draw Argand diagrams showing the sets of points z for which

(i)  arg z " U
4

(ii)  arg (z � i) " U
4

(iii) 0 ! arg (z � i) ! U
4

.

SOLUTION

(i) arg z " U
4  

� � the line joining the origin to the point z has

  direction U
4

   � z lies on the half-line from the origin in 

  the U
4

 direction, see figure 11.19.

 (Note that the origin is not included, since arg 0 is undefined.)

(ii) arg (z � i) " U
4  

 
� the line joining the point i to the point z has 

  direction U
4

 

 � z lies on the half-line from the point i in 

  the U
4

 direction, see figure 11.20.

(iii) 0 ! arg (z � i) ! U
4  

 
� the line joining the point i to the point z has

  direction between 0 and U
4  

(inclusive) 

 � z lies in the one-eighth plane shown in 
  figure 11.21.

EXERCISE 11F 1   For each of parts (i) to (vi) draw an Argand diagram showing the set of points z 
for which the given condition is true.

(i) arg z " ��U
3

 (ii) arg (z � 4i) " 0

(iii) arg (z � 3) # U
2

 (iv) arg (z � 1 � 2i) " 3
4
U

(v) arg (z � 3 � i) ! ��U
6

 (vi) ��U
4  

! arg (z � 5 � 3i) ! U
3

2 Find the least and greatest possible values of arg z if a��z  � 8i  a ! 4.

O 5e

Im

Figure 11.19

O 5e

Im

i

Figure 11.20

O 5e

Im

i

Figure 11.21
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3  You are given the complex number w " � 3 � 3i.
(i) Find arg w and a�w � 2i  a.
(ii) On an Argand diagram, shade the region representing complex numbers z 

which satisfy both of these inequalities.

  a �z � 2i  a ! 2   and   1
2
π ! arg z ! 2

3π.

 Indicate the point on your diagram which corresponds to w.
(iii) Given that z satisfies both the inequalities in part (ii), find the greatest 

possible value of a �z � w a.
   [MEI, part]

4 The complex number w is given by w = ��1
2

3
2

3� i .
 

�

(i) Find the modulus and argument of w.

(ii) The complex number z has modulus R and argument θ, where 

 −1
3π " θ " −1

3π. State the modulus and argument of wz and the modulus 
and argument of zw .

(iii) Hence explain why, in an Argand diagram, the points representing z, wz 
and zw  are the vertices of an equilateral triangle.

(iv) In an Argand diagram, the vertices of an equilateral triangle lie on a circle 
with centre at the origin. One of the vertices represents the complex number 
4 � 2i. Find the complex numbers represented by the other two vertices. 
Give your answers in the form x + iy, where x and y are real and exact.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q10 November 2008] 

5 (i) Solve the equation z2 – 2iz – 5 = 0, giving your answers in the form x + iy 
where x and y are real.

(ii) Find the modulus and argument of each root.

(iii) Sketch an Argand diagram showing the points representing the roots.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q3 June 2005] 

6 (i) Solve the equation z2 � (2�3)iz � 4 " 0, giving your answers in the form 
x + iy, where x and y are real.

(ii) Sketch an Argand diagram showing the points representing the roots.

(iii) Find the modulus and argument of each root.

(iv) Show that the origin and the points representing the roots are the vertices 
of an equilateral triangle.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 June 2009]

7 The complex numbers �2 � i and 3 � i are denoted by u and v respectively.

(i) Find, in the form x � iy, the complex numbers

(a) u � v,

(b) 
u
v , showing all your working.
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(ii) State the argument of uv .

 In an Argand diagram with origin O, the points A, B and C represent the 
complex numbers u, v and u + v respectively.

(iii) Prove that angle AOB " 34U.

(iv) State fully the geometrical relationship between the line segments OA 
and BC.

 [Cambridge International AS & A Level Mathematics 9709, Paper 32 Q7 November 2009]

8 The complex number 
2

1− + i is denoted by u.

(i) Find the modulus and argument of u and u2.

(ii) Sketch an Argand diagram showing the points representing the complex 
numbers u and u2. Shade the region whose points represent the 
complex numbers z which satisfy both the inequalities a���z  a�" 2 and 
a���z � u2  a�" a���z � u  a.

 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q8 June 2007]

Working with complex numbers in polar form

The polar form quickly leads to an elegant geometrical interpretation of the 
multiplication of complex numbers. For if

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2)

then z1z2 " r1r2(cos θ1 � i sin θ1)(cos θ2 � i sin θ2)

� " r1r2[cos θ1cos θ2 � sin θ1 sin θ2 � i (sin θ1 cos θ2 � cos θ1 sin θ2)].

Using the compound-angle formulae gives

z1z2 " r1r2[cos (θ1 � θ2) � i sin (θ1 � θ2)].

This is the complex number with modulus r1r2 and argument (θ1 � θ2), so we 
have the beautiful result that 

a��z1z2  a��"��a��z1 a�a��z2  a

and

arg (z1z2) " arg z1 + arg z2 (± 2U if necessary, to give the principal argument).

So to multiply complex numbers in polar form you multiply their moduli and 
add their arguments.

ACTIVITY 11.12 Using this interpretation, investigate

(i) multiplication by i

(ii) multiplication by –1.
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The corresponding results for division are easily obtained by letting 
z
z

1

2
 " w. 

Then z1 " wz2 so that

�a��z1 a " �a��w a��a��z2 a and arg z1 " arg w + arg z2 (± 2U if necessary).

� �a��z1 a
Therefore a��w a��"��a� zz1

2
�a�"��––––

� �a��z2 a

and arg w = arg 
z
z

1

2

  = arg z1  – arg z2  (± 2U if necessary, to give the principal argument).

So to divide complex numbers in polar form you divide their moduli and subtract 
their arguments.

This gives the following simple geometrical interpretation of multiplication 
and division.

To obtain the vector z1z2 enlarge the vector z1 by the scale factor a��z2  a and rotate it 
through arg z2 anticlockwise about O (see Figure 11.22 (ii)).

To obtain the vector 
z
z

1

2
 enlarge the vector z1 by scale factor 1

2z
 and rotate it 

clockwise through arg z2 about O (see Figure 11.22 (iii)). 

This combination of an enlargement followed by a rotation is called a spiral 
dilatation.

In summary:

a��z1z2  a��"��a��z1 a�a��z2  a� � � � � � � arg (z1z2) " arg z1 + arg z2

 and 
z

z

z

z
1

2

1

2

"              arg 
z
z

1

2

⎛
⎝⎜

⎞
⎠⎟  " arg z1 � arg z2

O

1

2

3

4

5

6

1 2 3 4 5e

]1

]2

U1

U2

Im

O

1

2

3

4

5

6

7

8

9

1 2 3 4 5e

]1U1

]1]2

U1U2

Im

O

1

2

3

4

5

6

1 2 3 4 5e

]1

]1
]2

U1

Im

arg ]1

arg ]2

arg ]2

U1
U2

arg ]2

        (i)  z1 and z2                       (ii) Multiplying z1 by z2     (iii) Dividing z1 by z2

Figure 11.22

arg(z1z2) " arg z1 � arg z2

arg z
z

1

2

⎛
⎝⎜

⎞
⎠⎟

 " arg z1 � arg z2
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ACTIVITY 11.13 Check this by accurate drawing and measurement for the case z1 " 2 � i, z2 " 3 � 4i. 
Then do the same with z1 and z2 interchanged.

EXAMPLE 11.11 Find  

(i) 6
2 2

2
4 4

cos sin cos sinπ π π π+( ) × +( )i i  

(ii) 6
2 2

2
4 4

cos sin cos sinπ π π π+( ) ÷ +( )i i  

SOLUTION 

(i) Remember that  

r1(cos θ1 + i sin θ1) w r2(cos θ2 + i sin θ2) " r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

 So to multiply complex numbers you 

 ● multiply the moduli 
 ● add the argXmeQts�

6
2 2

2
4 4

12 3
4

3cos sin cos sin cos sinπ π π π π π+( ) × +( ) = +i i i
44( )

(ii) To divide complex numbers you 

 ● divide the moduli
 ● sXbtract the argXmeQts�

6
2 2

2
4 4

3
4 4

cos sin cos sin cos sinπ π π π π π+( ) ÷ +( ) = +( )i i i

This leads to an alternative method of finding  
the square root of a complex number.

Writing 8 � 6i in polar form gives

r = + =8 6 102 2

tan θ " 68 ¡ θ " 0.6435 radians

So 8 � 6i " 10(cos 0.6435 � i sin 0.6435)

Notice that if you add 2U to the argument you 
will end up with exactly the same complex number  
on the Argand diagram (as you have just rotated through one full turn).

So 8 + 6i is also the same as 10[cos(0.6435 + 2U) + i sin(0.6435 + 2U)].

Let r(cos θ + i sin θ) be the square root of 8 + 6i so that 

r r r(cos sin ) (cos sin ) (cos sin )θ θ θ θ θ θ+ × + = + = +i i i2 2 2 8 66i

¡ r(cos 2θ + i sin 2θ) = 10(cos 0.6435 + i sin 0.6435) !1 

and  r(cos 2θ + i sin 2θ) = 10[cos(0.6435 + 2U) + i sin(0.6435 + 2U)] !2

��������������������������������������U    U��������3U6 × 2 = 12; – + – = ––
                   2    4     4

����������������������������������U    U��������U6 { 2 = 3; – � – = –
                 2    4    4

O 5e�

�

����3����

Im

U

Figure 11.23
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From !1  or !2 r2 " 10 ¡ r " 10

From !1  2θ " 0.6435 ¡ θ " 0.321 75

From !2   2θ " 0.6435 � 2U� ¡ θ " 0.321 75 � U

So one square root of 8 + 6i is

10 0 32175 0 32175 3(cos . sin . )+ = +i i

and the other square root is

10 0 32175 0 32175 3[cos( . ) sin( . )]+ + + = − −π πi i 

CRmSare this methRd Zith that Xsed RQ Sage 2�� tR IiQd the sTXare rRRts RI � � �i�

●? What are the square roots of 10[cos(0.6435 � 2nU) � i sin(0.6435 � 2nU)], where 
n is an integer?

Complex exponents

When multiplying complex numbers in polar form you add the arguments, and 
when multiplying powers of the same base you add the exponents. This suggests 
that there may be a link between the familiar expression cos θ + i sin θ and the 
seemingly remote territory of the exponential function. This was first noticed 
in 1714 by the young Englishman Roger Cotes two years before his death at the 
age of 28 (when Newton remarked ‘If Cotes had lived we might have known 
something’), and made widely known through an influential book published by 
Euler in 1748.

Let z = cos θ + i sin θ. Since i behaves like any other constant in algebraic 
manipulation, to differentiate z with respect to θ you simply differentiate the real 
and imaginary parts separately. This gives

d
d

z
θ

 " –sin θ � i cos θ

 " i2 sin θ � i cos θ
 " i(cos θ � i sin θ)
 " iz

So z = cos θ + i sin θ is a solution of the differential equation d
d

z
θ 

= iz.

If i continues to behave like any other constant when it is used as an index, then 

the general solution of  d
d

z
θ

 = iz is z = eiθ+c, where c is a constant, just as x = ekt+c is 

the general solution of  d
d

x
t

 = kx.

The square root 
of the modulus 

of 8 � 6i.

Half of the argument 
of 8 � 6i.

Half of the argument 
of 8 � 6i, plus U.
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Therefore cos θ + i sin θ = eiθ+c.

Putting θ " 0 gives

cos θ � i sin θ " e0+c

¡� 1 " ec

¡ c " 0

and it follows that

cos θ � i sin θ " eiθ.

The problem with this is that you have no way of knowing how i behaves as an 
index. But this does not matter. Since no meaning has yet been given to ez when 
z is complex, the following definition can be made, suggested by this work with 
differential equations but not dependent on it:

eiθ = cos θ � i sin θ.

Note

The particular case when θ " U gives eiU " cos U � i sin U " –1, so that

eiU � 1 = 0.

This remarkable statement, linking the five fundamental numbers 0, 1, i, e and U, the 

three fundamental operations of addition, multiplication and exponentiation, and the 

fundamental relation of equality, has been described as a ‘mathematical poem’.

EXAMPLE 11.12 Find  

(i) (a) 4 3e e5i 2iw  

 (b) 6 3e e9i 2i{  

(ii) Write these results as complex numbers in polar form.

SOLUTION 

(i) (a) 4 3 12e e e5i 2i 7i× =
4 w 3 " 12; 5i � 2i " 7i

   

 (b) 6 3 2e e e9i 2i 7i÷ =
6 { 3 " 2; 9i � 2i " 7i

 

(ii) (a) 4(cos 5 + i sin 5) × 3(cos 2 + i sin 2) = 12(cos 7 + i sin 7)

 (b) 6(cos 9 + i sin 9) ÷ 3(cos 2 + i sin 2) = 2(cos 7 + i sin 7)
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EXERCISE 11G   1 Find the following.

(i)  8 0 2 0 2(cos . sin . )� i  × 4 0 4 0 4(cos . sin . )� i

(ii)  8 0 2 0 2(cos . sin . )� i  ÷ 4 0 4 0 4(cos . sin . )� i

(iii)  6
3 3

cos sinπ π+( )i  × 2
6 6

cos sinπ π+( )i

   (iv)  6
3 3

cos sinπ π+( )i  ÷ 2
6 6

cos sinπ π+( )i  

(v)  12(cos sin )π π+ i  × 2
4 4

cos sinπ π+( )i

(vi)  12(cos sin )π π+ i  ÷ 2
4 4

cos sinπ π+( )i

2 Given that z = 2
4 4

cos sinπ π+( )i  and w = 3
3 3

cos sinπ π+( )i , find the following in 
polar form.

(i) wz (ii) 
w
z  (iii) 

z
w

(iv) 
1
z

 (v) w2 (vi) z5 

(vii) w3z4 (viii) 5iz (ix) (1 + i)w

3 Prove that, in general, arg 1
z

 " –arg z, and deal with the exceptions.

4 Given the points 1 and z on a Argand diagram, explain how to find the 
following points by geometrical construction.

(i) 3z (ii) 2iz (iii) (3 + 2i)z

(iv) z* (v) �a��z  a (vi) z2

5 Find the real and imaginary parts of 
− +
+
1

1 3
i
i
.

 Express –1 + i and 1 + 3 i  in polar form.

 Hence show that cos 
5
12

3 1
2 2

π = −
, and find an exact expression for sin

5
12
π

.
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6 The complex numbers α and β are given by α α
� 4 = 2 – i and β = – 6 2� i .

(i) Show that α = 2 + 2i.

(ii) Show that �a��α a = a��β a. Find arg α and arg β.

(iii) Find the modulus and argument of αβ. Illustrate the complex numbers α, 
β and αβ on an Argand diagram.

(iv) Describe the locus of points in the Argand diagram representing complex 
numbers z for which a��z – α a = a��z – β a. Draw this locus on your diagram

(v) Show that z = α + β satisfies a��z – α a = a��z – β a. Mark the point representing 
α + β on your diagram, and find the exact value of arg(α + β).

 [MEI]

7 Express ez in the form x + iy where z is the given complex number.

(i) –iπ (ii) 
iπ
4

 (iii) 2 5
6

� iπ
 

(iv) 3 – 4i

8    Find the following.  

(i) (a) 2 5e e3i 2i× −  (b) 8 2e e5i 5i{  (c) 3 2e e7i iw  

 (d) 12 4e e5i 4i{  (e) 3e e2i iw  (f) 8 2e e3i 4i{  

(ii) Write these results as complex numbers in polar form.

Complex numbers and equations

The reason for inventing complex numbers was to provide solutions for 
quadratic equations which have no real roots, i.e. to solve az2 � bz � c " 0 when 
the discriminant b2 � 4ac is negative. This is straightforward since if 
b2 � 4ac " �k2 (where k is real) then the formula for solving quadratic equations 

gives z " − ±b k
a

i
2

. These are the two complex roots of the equation. Notice that 

when the coefficients of the quadratic equation are real, these roots are a pair of 
conjugate complex numbers.

It would be natural to think that to solve cubic equations would require a further 
extension of the number system to give some sort of ‘super-complex’ numbers, 
with ever more extensions to deal with higher degree equations. But luckily 
things are much simpler. It turns out that all polynomial equations (even those 
with complex coefficients) can be solved by means of complex numbers. This  
was realised as early as 1629 by Albert Girard, who stated that an nth degree 
polynomial equation has precisely n roots, including complex roots and 
taking into account repeated roots. (For example, the fifth degree equation  
(z � 2)(z � 4)2(z2 � 9) " 0 has five roots: 2, 4 (twice), 3i and �3i.) Many great 
mathematicians tried to prove this. The chief difficulty is to show that every 
polynomial equation must have at least one root: this is called the Fundamental 
Theorem of Algebra and was first proved by Gauss (again!) in 1799.
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The Fundamental Theorem, which is too difficult to prove here, is an example 
of an existence theorem: it tells us that a solution exists, but does not say what it 
is. To find the solution of a particular equation you may be able to use an exact 
method, such as the formula for the roots of a quadratic equation. (There are 
much more complicated formulae for solving cubic or quartic equations, but 
not in general for equations of degree five or more.) Alternatively, there are 
good approximate methods for finding roots to any required accuracy, and your 
calculator probably has this facility.

ACTIVITY 11.14 Find out how to use your calculator to solve polynomial equations.

You have already noted that the complex roots of a quadratic equation with real 
coefficients occur as a conjugate pair. The same is true of the complex roots of 
any polynomial equation with real coefficients. This is very useful in solving  
polynomial equations with complex roots, as shown in the following examples.

EXAMPLE 11.13 Given that 1 � 2i is a root of 4z3 � 11z2 � 26z � 15 " 0, find the other roots.

SOLUTION

Since the coefficients are real, the conjugate 1 � 2i is also a root.

Therefore [z � (1 � 2i)] and [z � (1 � 2i)] are both factors of 4z3 � 11z2 � 26z � 15 " 0.

This means that (z � 1 � 2i)(z � 1 � 2i) is a factor of 4z3 � 11z2 � 26z � 15 " 0.

(z � 1 � 2i)(z � 1 � 2i) " [(z � 1) � 2i][(z � 1) � 2i]
 " (z � 1)2 � 4
 " z2 � 2z � 5

By looking at the coefficient of z3 and the constant term, you can see that the 
remaining factor is 4z � 3.

4z3 � 11z2 � 26z � 15 " (z2 � 2z � 5)(4z � 3)

The third root is therefore 3
4.

EXAMPLE 11.14 Given that �2 � i is a root of the equation z4 � az3 � bz2 � 10z � 25 " 0, find the 
values of a and b, and solve the equation.

SOLUTION

z " �2 � i

z2 " (�2 � i)2 " 4 � 4i � (i)2 " 4 � 4i � 1 " 3 � 4i
z3 " (�2 � i)z2 " (�2 � i)(3 � 4i) " �6 � 11i � 4  " �2 � 11i
z4 " (�2 � i)z3 " (�2 � i)(�2 � 11i) " 4 � 24i � 11 " �7 � 24i
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Now substitute these into the equation.

�7 � 24i � a(�2 � 11i) � b(3 � 4i) � 10(�2 � i) � 25 " 0
 (�7 � 2a � 3b � 20 � 25) � (�24 � 11a � 4b � 10)i " 0

Equating real and imaginary parts gives

�2a � 3b � 2 " 0
11a � 4b � 14 " 0

Solving these equations simultaneously gives a " 2, b " 2.

The equation is z4 � 2z3 � 2z2 � 10z � 25 " 0.

Since �2 � i is one root, �2 � i is another root.

So (z � 2 � i)(z � 2 � i) " (z � 2)2 � 1
   " z2 � 4z � 5 

is a factor.

Using polynomial division or by inspection

z4 � 2z3 � 2z2 � 10z � 25 " (z2 � 4z  � 5)(z2 � 2z  � 5).

The other two roots are the solutions of the quadratic equation z2 � 2z � 5 " 0.

Using the quadratic formula

z " 2 4 4 5
2

± − ×

 " 2 16
2

± −

 " 2 4
2
± i

 " 1 ± 2i

The roots of the equation are �2 ± i and 1 ± 2i.

EXERCISE 11H 1  Check that 2 � i is a root of z3 � z2 � 7z � 15 " 0, and find the other roots.

2 One root of z3 � 15z2 � 76z � 140 " 0 is an integer. 
Solve the equation.

3 Given that 1 � i is a root of z3 � pz2 � qz � 12 " 0, find the real numbers 
p and q, and the other roots.

4 One root of z4 � 10z3 � 42z2 � 82z � 65 " 0 is 3 � 2i. 
Solve the equation.

5 The equation z4 � 8z3 � 20z2 � 72z � 99 " 0 has a pure imaginary root. 
Solve the equation.
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6 You are given the complex number w " 1 � i.

(i) Express w2, w3 and w4 in the form a � bi.
(ii) Given that w4 � 3w3 � pw2 � qw � 8 " 0, where p and q are real numbers, 

find the values of p and q.
(iii) Write down two roots of the equation z4 � 3z3 � pz2 � qz � 8 " 0, where p 

and q are the real numbers found in part (ii).
[MEI, part]

7 (i)  Given that α " �1 � 2i, express α2 and α3 in the form a � bi. 
Hence show that α is a root of the cubic equation

z3 � 7z2 � 15z � 25 " 0.

(ii) Find the other two roots of this cubic equation.
(iii) Illustrate the three roots of the cubic equation on an Argand diagram, and 

find the modulus and argument of each root.
(iv) L is the locus of points in the Argand diagram representing complex 

numbers z for which a �z � 5
2  

a�" 5
2. Show that all three roots of the cubic 

equation lie on L and draw the locus L on your diagram.
 [MEI]

8  The cubic equation z3 � 6z2 � 12z � 16 " 0 has one real root α and two 
complex roots β, γ.

(i) Verify that α " �4, and find β and γ in the form a � bi.
(Take β to be the root with positive imaginary part.)

(ii) Find 1
β

 and 1
γ

 in the form a � bi.

(iii) Find the modulus and argument of each of α, β and γ.

(iv) Illustrate the six complex numbers α, β, γ, 1
α

, 1
β

, 1
γ

 on an Argand 

 diagram, making clear any geometrical relationships between the points.

[MEI, part]

9 You are given that the complex number α " 1 � 4i satisfies the cubic equation

       z3 � 5z2 � kz � m " 0,

where k and m are real constants.

(i) Find α2 and α3 in the form a � bi.

(ii) Find the value of k and show that m " 119.

(iii) Find the other two roots of the cubic equation.
Give the arguments of all three roots.

(iv) Verify that there is a constant c such that all three roots of the cubic 
equation satisfy

a��z � 2 a " c.

Draw an Argand diagram showing the locus of points representing all 
complex numbers z for which a��z � 2 a " c.
Mark the points corresponding to the three roots of the cubic equation.

[MEI]
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10 In this question, α is the complex number �1 � 3i.

(i) Find α2 and α3.

It is given that λ and µ are real numbers such that λα3 � 8α2 � 34α � µ " 0.

(ii) Show that λ " 3, and find the value of µ.
(iii) Solve the equation λz3 � 8z2 � 34z � µ " 0, where λ�and µ are as in part (ii).
 Find the modulus and argument of each root, and illustrate the three 

roots on an Argand diagram.
[MEI, part]

11 The cubic equation z3 � z2 � 4z � 48 " 0 has one real root α and two complex 
roots β and γ.

(i) Verify that α " 3 and find β and γ in the form a � bi.
Take β to be the root with positive imaginary part, and give your answers 
in an exact form.

 (ii) Find the modulus and argument of each of the numbers α, β, γ, β
γ

, giving 
the arguments in radians between �π and π.

 Illustrate these four numbers on an Argand diagram.

(iii) On your Argand diagram, draw the locus of points representing complex 
numbers z such that

arg (z � α) " arg β.
[MEI, part]

12 The equation 2x3 � x2 � 25 " 0 has one real root and two complex roots.

(i) Verify that 1 � 2i is one of the complex roots.

(ii) Write down the other complex root of the equation.

(iii) Sketch an Argand diagram showing the point representing the complex 
number 1 � 2i. Show on the same diagram the set of points representing 
the complex numbers z which satisfy

a��z a " a��z � 1 � 2i a.
 [Cambridge International AS & A Level Mathematics 9709, Paper 3 Q7 November 2005]

KEY POINTS

1 Complex numbers can be written in the form z " x � iy with i2 " �1.
x is called the real part, Re(z), and y is called the imaginary part, Im(z).

2 The conjugate of z is z* " x � iy.

3 To add or subtract complex numbers, add or subtract the real and 
imaginary parts separately.

(x1 � iy1) ± (x2 � iy2) " (x1 ± x2) � i(y1 ± y2)
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4 To multiply complex numbers, multiply out the brackets and simplify.

(x1 � iy1)(x2 � iy2) " (x1x2 � y1y2) � i(x1y2 � x2y1)

5 To divide complex numbers, multiply top and bottom by the conjugate of 
the bottom.

x y
x y

x x y y x y x y
x y

1 1

2 2

1 2 1 2

2
2

2
2

+
+ = + +

+
i
i

i( – )2 1 1 2( )

6 The complex number z can be represented geometrically as the point 
(x, y). This is known as an Argand diagram.

7 The modulus of z " x � iy is a��z a " x y2 2� . 
This is the distance of the point z from the origin.

8 The distance between the points z1 and z2 in an Argand diagram is a�z2 � z1 a.

9 The principal argument of z, arg z, is the angle θ, �π " θ ! π, between the 
line connecting the origin and the point z and the positive real axis.

10 The modulus�argument or polar form of z is z " r(cos θ � i sin θ), where 
r " a��z a  and θ " arg z.

11 x " r cos θ y " r sin θ

 r " x y2 2�  tan θ " 
y
x

12 To multiply complex numbers in polar form, multiply the moduli and add 
the arguments.

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

13 To divide complex numbers in polar form, divide the moduli and subtract 
the arguments.

z
z

r
r

1

2

1

2
" [cos(θ1 � θ2) � i sin(θ1 � θ2)]

14 eiθ = cos θ � i sin θ, e–iθ = cos θ – i sin θ

15 A polynomial equation of degree n has n roots, taking into account 
complex roots and repeated roots. In the case of polynomial equations 
with real coefficients, complex roots always occur in conjugate pairs.
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●? (Page 2)
For the green curve you can try  
y " f(x) where f(x) " kx(x � 1)(x � 2). 
This passes through (0, 0), (0, 1) and 
(2, 0) but its maximum is not quite 

when x " 1
2
. A value of k of 0.208 

gives a maximum value of 0.08. The 
blue curve is then y " �f(x). A better 
fit can be obtained by taking a two 
part function

 f(x) " 0.32x(1 � x) for 0 ! x ! 1

and f(x) " 0.32(x � 1)(x � 2)  

 for 1 ! x ! 2.

Exercise 1A (Page 7)

  1 (i)  3  (ii) 12  (iii)  7 

  2 2x3 � 4  

  3 x4 � 4x3 � 6x2 � 4x � 1  

  4 x3 � 2x2 � 5x � 7  

  5 �x2 � 15x � 18  

  6 2x4 � 8  

  7 x4 � 4x3 � 6x2 � 4x � 1  

  8 x4 � 5x2 � 4  

  9 x4 � 10x2 � 9  

10 x11 � 1  

11 2x � 2  

12 10x2  

13 4  

14 2x2 � 2x  

15 �8x3 � 8x

16 x2 � 2x � 3 

17 x2 � 3x  

18 2x2 � 5x � 5

19 x3 � x2 � 2x � 2

20 2x2 � 3

21 x3 ��2x2 � 5

22 x3 ��2x2 � x

23 2x3 � 3x2 � x  � 4

24 2x2 ��2x � 3

25 x2 � 3x � 1

26 x2 � 4

27 x2 � 2x  � 2

28 x2 � 2x  � 2

●? (Page 13)

Its order will be less than n.

Exercise 1B (Page 14)

  1 (i)  0, 0, �8, �18, �24, �20, 0

 (ii) (x � 3)(x � 2)(x � 3) 

 (iii) �3, �2 or 3

 (iv) 

                                                                                                                               

 

  2 (i) �15, 0, 3, 0, �3, 0, 15  

   (ii) x(x � 2)(x � 2)

   (iii) �2, 0 or 2

 (iv)  

  3 (i) 30, 0, (x � 3) 

 (ii) p " 2, q " �15  

 (iii) �5, 2 or 3  

 (iv) 

  

4 (ii) �2, 3 or 4

 (iii) 

  5 (i) 0 

 (ii) –1 ± 2

 (iii) 

  6 (i) �4  

 (ii) (x � 1)2

 (iii) 

  7 (i) a " 2, b " 1, c " 2  

 (ii) 0, 3  or – 3

–2

–3

O 3 x

y

–2 O 2 x

y

–5 2 3 x

30

y

–2 3 4 x

24
y

–2 2 x

y

1

4

–4

x

y

Answers

Neither University of Cambridge International Examinations nor OCR bear any responsibility for the example 
answers to questions taken from their past question papers which are contained in this publication.
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P2   8 (i) (x2 � 4)(x2 � 1)  

 (ii)  (x � 2)(x � 2)(x2 � 1)  

 (iii) Two real roots: �2 and 2

  9 (ii) 2x2 � 9x � 11 remainder 19

10 (i) ±6, ±3, ±2, ±1,

 (ii) �1, 2 or 3

11 (i) (x � 1)(x � 2) (x � 2)  

 (ii) (x � 1)(x2 � x � 1)  

 (iii) (x � 2)(x2 � 2x � 5)  

 (iv) (x � 2)(x2 � x � 3)

12 (ii) (a)  x3 � 2x2 � 2x � 2 
remainder �6

  (b)  x3 � 3x2 � 6x � 6 
remainder �2

  (c)  x2 � 2x � 4 
remainder �2x � 4

13 �12

14 2 or �5

15 �5; 4; 4

16 �1; �7; 1, �2 or 32
17 (i) a " 2, b " 3

 (ii) 2x � 1

18 a " 2, b " �3

19 (i) ��3

 (ii) (x � 2)(2x � 1)(x � 3)

20 (i) a " �4, b " 1

 (ii) (x � 3) and (x � 1)

21 (i) 4

 (ii) x2 � 2x � 2

●? (Page 17)
g(3) " 3, g(�3) " 3

| 3 � 3 | " 6, | 3 � 3 | " 0, 

| 3 | � | 3 | " 6, | 3 | � | �3 | " 6

●? (Page 19)

| x | " 2 and x # 0 ¡ 0 ! x " 2

| x | " 2 and x " 0 ¡ �2 " x " 0

Exercise 1C   (Page 21)

  1 (i) x " �9 or x " 1

 (ii) x " �7 or x " 1

 (iii) x " �1 or x " 7

 (iv) x " �3
2 or x " 2

 (v) x " �3 or x " 2

 (vi) x " 1 or x " 7

 (vii) x " �2 or x " 4

 (viii) x " �8
3 or x " 2

 (ix) x " �1 or x " 32

  2 (i) �8 " x " 2

 (ii) 0 ! x ! 4

 (iii) x " �1 or x $ 11

 (iv) x ! �3 or x # 1

 (v) �2 " x " 5

 (vi) �2
3 ! x ! 2

  3 (i) | x � 1 | " 2

 (ii)  | x � 5 | " 3

 (iii)  | x � 1 | " 3

 (iv)  | x � 2.5 | " 3.5

 (v)  | x � 10 | " 0.1

 (vi)  | x � 4 | " 3.5

  4 (i) 

 (ii) 

 (iii) 

 (iv) 

 (v) 

 (vi) 

  5 (i) x " 1
2

 

 (ii)  x " 7
2

 

 (iii) x # � 1
2

 

 (iv)  �1 ! x ! 3

 (v)  x " �1 or x $ 3

 (vi)  x ! �6 or x # �4
3
 

  6 1
2

1" "x  

  7 x $ 1
3

 

  8 x " �a

O–2

2

x

y

O 1.5

3

x

y

O

(–2, 2)

x

y

–4

O

1

x

y

O

(–2  , –4)

1

x

y

1
2

1
2

1
2

–4 –

O

5

x

y

(2, 3)
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●? (Page 23)
Without using logarithms, you would 
probably use trial and improvement 
to find x where x3 " 500.

Investigation (Page 24)

(i) 10

(ii) 1
2

(iii) 108 6 85. /  " 1.26

Activity 2.1 (Page 27)

●? (Page 28)

 ● a0 " 1, loga 1 " 0

 ● am " x $ 0 (for a $ 0) so                

loga (x) " m is defined only for 

x $ 0

 ● Putting x " 1y  in log 1
y

⎛
⎝⎜

⎞
⎠⎟  " � log y

 ¡ log x " � log 1
x( ): as x q 0, 

       � log 1
x( ) q � h

 ●  There is no limit to m in am 

" x and loga x " m; think, for 

example, of base 2, i.e. a " 2. 

Then x " 2y. When y " 1, 2, 3, 

4, … then x " 2, 4, 8, 16, … . So 

increases in y are accompanied 

by ever larger increases in x and 

so a decreasing gradient. This is 

the case not just for a " 2 but for 

any value of a greater than 1.

 ● loga a " 1

Exercise 2A (Page 29)

  1 (i) x " log3 9, 2

 (ii) x " log4 64, 3

 (iii) x " log2 14, �2

 (iv) x " log5 15, �1

 (v) x " log7 1, 0

 (vi) x " log16 2, 14

  2 (i) 3y " 9, 2

 (ii) 5y " 125, 3

 (iii) 2y " 16, 4

 (iv) 6y " 1, 0

 (v) 64y " 8, 12

 (vi) 5y " 1
25, �2

  3 (i) 4

 (ii) �4

 (iii) 1
2

 (iv) 0

 (v) 4

 (vi) �4

 (vii) 3
2

 (viii) 1
4

 (ix) 1
2

 (x) �3

   4 (i) log 10

 (ii) log 2

 (iii) log 36

 (iv) log 1
7

 (v) log 3

 (vi) log 4

 (vii) log 4

 (viii) log 1
3

 (ix)   log 1
2

 (x)   log 12

  5 (i) 2 log x

 (ii) 3 log x

 (iii) 1
2 log x

 (iv) 11
6  log x

 (v) 6 log x

 (vi) 5
2 log x

  6 (i) x < 7

 (ii) x # 3

 (iii)  x # 3

 (iv) x > 0.437

 (v) x % 1

 (vi) x # 0.322

 (vii) 0.431 % x < 1.29

 (viii) 0 % x < 0.827

 (ix) 1 < x < 2.58

 (x) 0.68 < x < 1.49

  7 log10 x
2

7
, x " 21

  8 (i) x " 19.93

 (ii) x " �9.97

 (iii) x " 9.01

 (iv) x " 48.32

 (v) x " 1375

  9 9

10 (i) 25

 (ii) 17

11 (i) 4 < y < 6

 (ii) 1.26 < x < 1.63

12 y = 
log log

log
4

3
� x

13 x = 0.802

Exercise 2B (Page 35)

Some of the questions in this exercise 
involve drawing a line of best fit by 
eye. Consequently your answers 
may reasonably vary a little from 
those given.

1
2
3

–1
–2
–3

2 4 6 8 10 12 14 16

y

x

1
2

1
8(  , –3)

1
4(  , –2)

1
2(  , –1)

(2, 1)

(4, 2)

(8, 3)
(1, 0)

(16, 4)4

0

2 2 1 4
1
2= ≈ .
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  form R " kTn, the graph of  
  log R against log T will be a  
  straight line.

 (ii)  Values of log R:  5.46,  5.58,  
5.72,  6.09,  6.55

   Values of log T:  0.28,  0.43,  
0.65,  1.20,  1.90

 (iii) k " 1.8 w 105, n " 0.690

 (iv)  0.7 days

  2 (ii)  Plotting log A against t 
will test the model: if it is a 
straight line the model fits 
the data.

 (iii) b " 1.4, k " 0.89

 
 
 
 
 
 
 
 (iv) (a) t " 2.4 days

  (b) A " 3.0 cm2

 (v) Exponential growth

  3 (ii)  k " 3.2 w 106, a " 0.98 
The constant k is the original 
number of trees. 

  4 (ii) k = 1100, n = 1.6 

 (iii) s = 2500 m 

 (iv)  The train would not   
continue to accelerate like  
this throughout its journey.  
After 10 minutes it would  
probably be travelling at 
constant speed, or possibly 
even slowing down.

  5 (ii) b = 1.37, k = 1.58

  6 Taking logs of both sides, 
 log y " log A � B log x.

  Plotting log y against log x gives 
a straight line of gradient B and 
intercept log A.

 This gives A " 1.5, B " 0.78.
 The value of y that is wrong is  
 6.21. If x is 5.07, y should be 5.32  
 according to the equation.

  7 log y " B log x � log A.
  He should plot log y against 

log x. If this gives a straight line, 
there is a relationship of the 
form y " Ax B. If there is no such 
relationship, the points will not 
be in a straight line.

  The value of log A is given by 
the intercept on the log y axis. 
The value of B is the gradient of 
the line.

 From the graph, A " 1.5, B " 0.5.
  The formula is therefore  

y " 1.5x0.5.

  8 (i) 

 (ii)  The graph is a straight 
line.   

 (iii) A " 2.0, n " 1.5

  9 (ii) 

 (iii) a ~ 3, b ~ 2

 (v) Just over 3 million.

10 (ii) 

log10 d log10 z

2.89 0.32

2.91 0.41

2.94 0.51

2.97 0.60

3.00 0.68

3.02 0.75

3.05 0.77

3.07 0.79

 (iii) D ~ 1050

 (iv) n " 3

 (v) d " 840 (nearest 10)

11 (i) 
log
log

4
3

 (ii)   3.42

●? (Page 40)
1
x  " x�1. This means that n " �1 
and so n � 1 " 0. You cannot divide 
by zero.

1.00

5

6

7
log R

2.0
log T

1
0

0.2

0.6
0.8

log A

2 3 4 5

0.4

–0.2
t

0.2 0.4 0.6 0.8 1.0 1.2 1.40

0.2

0.6

1.0
log y

0.4

0.8

log x

0.20 0.4 0.6 0.8 1.0 1.2 1.4

1.2
1.0
0.8
0.6
0.4
0.2

0

1.6

2.0

log y

1.4

1.8

2.2
2.4

log x

0
0 1 2 3 4 5 6 7 8 9 10

lo
g 

N

1

2

3

t

0
2.8 3.0 3.2

log10 z

0.4

0.8

0.2

–0.2

0.6

1.0

log10 d
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(i) 1.099

(ii) 0.693

(iii) 1.792

µ1

31
x  dx � µ1

21
x  dx " µ1

61
x  dx

Activity 2.2 (Page 41)

(i) 

(ii)  x " az ¡ dx " adz

 Converting the limits:
 x " a ¡ z " 1

 x " ab ¡ z " b

 µa

ab
 
1
x  dx " µ1

b
 
1

az  w a dz 

 " µ1

b
 
1
z  dz

 µ1

b
 
1
z  dz " µ1

b
 
1
x  dx " L(b)

(iii)  L(a) � µa

ab
 
1
x  dx "�L(ab) 

 ¡ L(a) � L(b) " L(ab)

Activity 2.3 (Page 41)

(i) L(1) " µ1

11
x  dx "�0

(ii) L(a) � L(b) " µ1

a
 
1
x  dx � µ1

b
 
1
x  dx

                        " µb

a
 
1
x  dx

 Let x " bz

 µb

a
 
1
x dx "

 

µ1

a–b
 
1
z  dz

              " L(a
b)

(iii) L(an) " µ1

an1
x dx

 Let x " zn then dx " nz n�1 dz.

 µ1

a
 
1
x dx " µ1

a
 
1

zn  w nzn�1 dz

              " n µ1

a
 
1
z  dz

              " n L(a)

Activity 2.4 (Page 42)

e " 2.72 (2 d.p.)

Exercise 2C (Page 47)

  1 x " x0ekt

  2 t " 1
k

 ln(s
s
0 )

  3 p " 25e�0.02t

  4 x " ln( y
y

–
–

5
50
)

  5 (i) x = 0.0540

 (ii) x = 0.0339

 (iii) x = 0.238

 (iv) x = 0.693

 (v) x = 1.386

 (vi) x = 1.099

  6 (i) 

 (ii) 100

 (iii) 1218

 (iv) 184 years

  7 (i) 1 m

 (ii) 4.61 m, 6.09 years

 (iii) a " e�2 " 0.135, b " 2.5

 (iv) 11 years

  8 y " 5
12x –

  9 4.11

10 x " 0.481

11 A " 3.67, b " 1.28

12 x " �1.68

13 A " 2.01, n " 0.25

Chapter 3

●? (Page 51)
Possible answers are:

Bridge: wavelength 50–100 m; 
amplitute 15–30 m

Ripple: wavelength 0.02–0.05 m; 
amplitude 0.005–0.01 m

Bridge: a " 15–30; b " U
50 � U25 

(about 0.06–0.13)

Ripple: a " 0.005–0.01; b " 125–300

Exercise 3A (Page 54)

  1 (i) x " 90°

 (ii) x " 60°, 300°

 (iii) x " 14.0°, 194.0°

 (iv) x " 109.5°, 250.5°

 (v) x " 135°, 315°

 (vi) x " 210°, 330°

  2 (i) �1

 (ii) –2
3

 (iii) –2
3

 (iv) –2
3

 (v) 0

 (vi) � 2

  3 (i) B " 60°, C " 30°

 (ii) 3

  4 (i) L = 45°, N = 45°

 (ii) 2 , 2 , 1

  5 (ii) 14.0°

  6 (i) 0 ! α ! 90°

 (ii)  No, for each of the second, 
third and fourth quadrants a 
different function is positive.

 (iii)  No, the graphs of the three 
functions do not intersect at 
a single point.

  7 (i) x " 0°, 180°, 360°

 (ii) x " 45°, 225°

x

y

O 1 a ab

y = 1
x

L(a) 1
xµ

ab
a dx

tO

100

P



A
n

sw
er

s

314

P2  (iii) x " 60°, 300°

 (iv)  x " 54.7, 125.3°, 234.7°, 
305.3°

 (v)  x " 18.4°, 71.6°, 198.4°, 
251.6°

 (vi) x " 45°, 135°, 225°, 315°

Activity 3.1 (Page 55)

y " sin(θ � 60°) is obtained from 

y " sin θ by a translation –60
0

F⎛
⎝⎜

⎞
⎠⎟ .

y " cos(θ � 60°) is obtained from 

y = sin θ by a translation 60
0

F⎛
⎝⎜

⎞
⎠⎟ .

It appears that the θ co-ordinate 
of A is midway between the two 
maxima (30°, 1) and (60°, 1).

Checking:  
θ " 45° ¡ sin(θ + 60°) " 0.966
             cos(θ � 60°) " 0.966.

If 60° is replaced by 35°, using 
the trace function on a graphic 
calculator would enable the 
solutions to be found.

  ●    (Page 56)

Area of a triangle " 12 base w height. 
The definitions of sine and cosine in 
a right-angled triangle.

Activity 3.2 (Page 57)

(i)  sin(θ � φ) 
     " sin θ cos φ � cos θ sin φ

� �¡ sin[(90° � θ) + φ] 
     " sin(90° � θ)cos φ 
     � cos(90° � θ)sin φ

� �¡ sin[90° � (θ � φ)] 
     " cos θ cos φ � sin θ sin φ

� �¡ cos(θ � φ) 
     " cos θ cos φ � sin θ sin φ

(ii)  ¡�cos[θ � (�φ)] 
     " cos θ cos(�φ) � sin θ sin(�φ)

  ¡�cos(θ � φ)
     " cos θ cos φ � sin θ sin φ

(iii) tan(θ � φ) " 
sin
cos

θ φ
θ φ
+( )
+( )

 " sin cos cos sin
cos cos – sin sin

θ φ θ φ
θ φ θ φ

+

 " 

sin cos
cos cos

cos sin
cos cos

cos cos
cos co

θ φ
θ φ

θ φ
θ φ

θ φ
θ

+

ss
–

sin sin
cos cosφ

θ φ
θ φ

 " tan tan
– tan tan
θ φ

θ φ
+

1

(iv) tan[θ � (�φ)] " 
tan tan –
– tan tan –
θ φ

θ φ
+ ( )

( )1

 tan(θ � φ) = tan – tan
tan tan
θ φ

θ φ1+

  ●    (Page 57)
No. In part (iii) you get 

tan 90° " 
3

1 3

1

3
1
3

+

×–

Neither tan 90° nor 1
1 1–  is defined. 

For the result to be valid you must 
exclude the case when θ � φ " 90°
(or 270°, 450°, ...). 

Similarly in part (iv) you must 
exclude θ � φ " 90°, 270°, etc.

Exercise 3B (Page 59)

  1 (i) 3
2 2

1
2 2

�

 (ii) – 1
2

 (iii) 3 1
3 1

–
�

 (iv) 3 1
3 1

�
–

  2 (i) 1
2

(sin θ � cos θ)

 (ii) 1
2( 3 cos θ � sin θ)

 (iii) 1
2( 3 cos θ � sin θ)

 (iv) 1
2

(cos 2θ � sin 2θ)

 (v) tan
– tan
θ

θ
+ 1

1

 (vi) tan –
tan
θ

θ
1

1+

  3 (i) sin θ

 (ii) cos 8φ

 (iii) 0

 (iv) cos 2θ

  4 (i) θ "�15°

 (ii) θ "�157.5°

 (iii) θ " 0° or 180°

 (iv) θ "�111.7°

 (v) θ "�165°

  5 (i) θ "�U
8

 (ii) θ "�2.79 radians

  6 (i) 1
5

 (ii) sin β " 35, cos β = 45
  7 (ii) x = 10.9°, –169.1°

  8 (ii) x = 22.5°, 112.5°

  9  α = 26.6° and β = 45° or 
α = 135° and β = 116.6°

10 (ii) θ = 24.7°, 95.3°

  ●    (Page 61)

For sin 2θ and cos 2θ, substituting 
θ " 45° is helpful. 

You know that sin 45° " cos 45° "� 1
2
�

and that sin 90° " 1 and cos 90° " 0.

For tan 2θ you cannot use θ " 45°. 

Take θ " 30° instead; tan 30° " 1
3

 

and tan 60° " 3.

No, checking like this is not the 
same as proof.

Exercise 3C (Page 65)

  1 (i) θ " 14.5°, 90°, 165.5°, 270°

 (ii)  θ " 0°, 35.3°, 144.7°, 180°, 
215.3°, 324.7°, 360°

 (iii) θ " 90°, 210°, 330°

 (iv) θ " 30°, 150°, 210°, 330°

 (v) θ " 0°, 138.6°, 221.4°, 360°

θ

y

0

1

180s 360s

A
y = sin(θ + 60s)

y = cos(θ – 60s)
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P2   2 (i) θ " –π, 0, π

 (ii) θ " –π, 0, π

� (iii) θ " –2
3
U, 0, 23

U

 (iv) θ " –3
4
U, –U

4
, U

4
, 3

4
U

 (v) θ " –11
12

U, –3
4
U, –7

12
U, –U

4
, U
12

,

   U
4

, 5
12
U, 3

4
U

  3  3 sin θ � 4 sin3
 θ, 

 θ " 0, U
4

, 3
4
U, π, 5

4
U, 7

4
U, 2π

  4 θ " 51°, 309°

  5 cot θ

  6 
tan ( – tan )

– tan
V V

V
3

1 3

2

2

  8 (ii) θ " 63.4°

  9 (i)

 (iii) x " U
6

, 5
6
U

10 (ii)  θ "�27.2°, 152.8°, 207.2°, 332.8°

11 (ii)  θ "�26.6°, 206.6°

12 (i)  1
10

4 3 3( )�

 
(ii)  tan ,tan2 324

7
44

117a a= − = −

Exercise 3D (Page 70)

  1 (i) 2  cos(θ � 45°)

 (ii) 29 cos(θ � 46.4°)

 (iii) 2 cos(θ � 60°)

 (iv) 3 cos(θ � 41.8°)

  2 (i) 2
 
cos(θ � 

U
4)

 (ii) 2 cos(θ � U
6 )

  3 (i) 5 sin(θ � 63.4°)

 (ii) 3 sin(θ � 48.2°)

  4 (i) 2  sin(θ � U
4)

 (ii) 3 sin(θ � 0.49 rad) 

  5 (i) 2 cos(θ � (�60°))

 (ii) 4 cos(θ � (�45°))

 (iii) 2 cos(θ � 30°)

 (iv) 13 cos(θ � 22.6°)

 (v) 2 cos(θ � 150°)

 (vi) 2 cos(θ � 135°)

  6 (i) 13 cos(θ � 67.4°)

 (ii) Max 13, min �13

 (iii) 

 

 (iv) θ "�4.7°, 220.5°

  7 (i) 2 3 sin(θ � U6)
 (ii) Max 2 3, θ " 2

3
U; 

  min �2 3, θ " 53
U

 (iii) 

 

 

 

 

 (iv) θ "�
U
3, π

  8 (i) 13 sin(2θ � 56.3°)

 (ii)  Max 13, θ " 16.8°; 

min � 13, θ " 106.8°

 (iii) 

 
 
 
 
 
 

 (iv)  θ "�53.8°, 159.9°, 233.8°, 339.9°

  9 (i) 3 cos(θ � 54.7°)

 (ii)  Max 3, θ " 54.7°; 

min � 3, θ " 234.7°

 (iii) 

 (iv) Max 
1

3 3–
, θ " 234.7°; 

  min 
1

3 3�
, θ " 54.7°

10 (ii) θ " 30.6°, 82.0°

11 (i) cos x cos α � sin x sin α

 (ii) r " 29, α " 68.2°

 (iii) Max 29 when x " 291.8°, 

  min � 29 when x " 111.8°

 (iv) x " 235.7°, 347.9°

12 (i) 30.96°

 (ii) x " 15.7°, 282.4°

 (iii)  x " 7.9°, 141.2°, 187.9°, 321.2°

13 (i) R = 10,    α " 53.13°

 (ii) 

 (iii) x " 119.55°, 346.71°

 (iv) θ " 103.29°, 330.45°

2

–2

–4

0 U �U x

y

y = cos2x

y = 3sinx – 1

13

5

–13

0 ���s
�����s

θ

y

–2 3

O �U θ

y

2 3

– 3

O ���s ���s θ

y

13

– 13

O ���s ���s θ

y

3

– 3

1�
�

y

±1�

� α 3��s x
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P2 14 (i) c " a b2 2�

 (ii) tan α " ba
 (iii) α " 36.87°

 (iv) θ " 103.29°, 330.45°

15 (i) 5 cos(x ��53.13°)

 (ii) x " 27.29°, 78.97°

16 (i) 26 cos(θ ��11.31°)

 (ii) θ " 27.02°, 310.36°

17 (i) 25 cos(θ ��73.74°)

 (ii) θ " 20.6°, 126.9°

18 θ " 81.3°, 172.4°

Investigation (Page 74)

The total current is 

 I " A1 sin ωt � A2 sin(ωt � α)        
(where ω " 2πf  ).

 I "  A1 sin ωt � A2 sin ωt cos α 
� A2 cos ωt sin α

   "  (A1 � A2 cos α)sin ωt 
� (A2 sin α)cos ωt

Let A1 � A2 cos α " P and A2 sin α " Q

so I " P sin ωt � Q cos ωt

 " P Q2 2�
 

sin(ωt + ε)

where ε " tan–1 (QP ).
This is a sine wave with the same 
frequency but a greater amplitude. 
The phase angle ε is between 0 and α.

Exercise 3E (Page 74)

  1 (i) sin 6θ

 (ii) cos 6θ

 (iii) 1

 (iv) cos θ

 (v) sin θ

 (vi) 3
2 sin 2θ

 (vii) cos θ

 (viii) �1

  2 (i) 1 � sin 2x

 (ii) cos 2x

 (iii) 1
2(5 cos 2x � 1)

  4 (i) θ " 4.4°, 95.6°

 (ii) θ " 199.5°, 340.5°

 (iii) θ " –U
6 , U2

 (iv) θ " �15.9°, 164.1°

 (v) θ " U2, U6, 56
U

 (vi) θ " 20.8°, 122.3°

 (vii) θ " 76.0°, 135°

Chapter 4

Activity 4.1 (Page 81)

y " uv     where u " x10    and    v " x7

gives    d
d

u
x

 " 10x 9    and    d
d

v
x

 " 7x6

Using the quotient rule, 

d
d

d
d

d
dy

x

v u
x

u v
x

v
"

–
2

 " x x x x
x

7 9 10 6

14
10 7w w–

 " 10 716 16

14
x x

x
–  " 3x 2

      y " uv  " x
x

10

7  " x3 ¡ 
d
d

y
x

 " 3x 2

Exercise 4A (Page 82)

  1 (i) x(5x3 � 3x � 6)

 (ii) x4(21x2 � 24x � 35) 

 (iii) 2x(6x  � 1)(2x  � 1)3

 (iv) � 
2

3 1 2( – )x

 (v) 
x x

x

2 2

2 2
3

1
( )

( )
�

�

 (vi)  2(2x � 1)(12x2 � 3x � 8)

 (vii) 2 1 6 2
2 1

2

2 2
( – )

( )
�

�
x x

x

 (viii) 7
3 3

–
( )

x
x �

 (ix) 3 1
2 1

x
x

–
–

  2 (i) � 
1

1 2( – )x
 

 (ii) �1; y " �x

 (iii) �1; y " �x � 4

 (iv)  The two tangents are 
parallel.

  3 (i) 3x(x � 2)

 (ii)  (0, 4), maximum; 
(2, 0), minimum

 (iii) 

  4 (i) � 
1

4 2( – )x
 

 (ii) 4y � x " 12  

 (iii) y " x � 3

 (iv) d
d

y
x

 | 0 for any value of x

  5 (i)  x
x

–
( – )

2
1 2

 (ii) 1
4

 (iii) (4, 8)

 (iv) Tangent: y " 8; normal: x " 4

 (v) (a) Q(37
4 , 8)

  (b) R(4, 29)

  6 (i) 
2 1 2

2 3 2
( )( )

( )
x x

x
� �

�

 (ii) (�1, �2); (�2, �3)

 (iii)  (�1, �2), minimum; 
(�2, �3), maximum

  7 (i) 2 1
2 1 2
x x
x
( )

( )
�

�
; (0, 0) and (�1, �1)

 (ii)  (0, 0) minimum; 
(�1, �1) maximum

  8 (i) 3 2
2

 (iii) 3
2
; 3; gradient " h

�
y

±1 2 x

y

x�

1
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P2   ●    (Page 85)

d
dx

(f(x)) is a polynomial of order 

(n � 1) so it has no term in xn.

●? (Page 87)

y " ln(3x) is a translation of y " ln(x) 

through 0
3

⎛
⎝⎜

⎞
⎠⎟ .

The curves have the same shape.

The gradient function is valid for  
x > 0.

Exercise 4B (Page 89)

  1 (i) 3
x  

 (ii) 1
x

 (iii) 2
x

 

 (iv) 2
12

x
x �

 (v) �1
x

 (vi) 1 � ln x

 (vii) x(1 � 2 ln(4x))

 (viii) � 1
1x x +( )

 (ix) x
x2 1–

 (x) 
1 2

3

– ln x
x

  2 (i) 3ex

 (ii) 2e2x

 (iii) 2xex2

 (iv) 2(x � 1)e(x �1)2

 (v) e4x(1 � 4x)

 (vi) 2x 2e�x(3 � x)

 (vii) 1 – x
xe

 (viii) 6e2x(e2x � 1)2

  3 (i) 0.108e0.9t

 (ii)  0.108 m h�1; 0.266 m h�1; 
0.653 m h�1; 1.61 m h�1

  4 (i) 
d
d

y
x

 " (1 � x)ex;

  d
d

2

2
y

x
 " (2 � x)ex

 (ii) (�1, �1
e)

  5 (i)  Rotation symmetry, centre 
(0, 0) of order 2. f(x) is an 
odd function since  
f (�x) " �f(x).

 (ii) f '(x) " 2 � ln(x2); f ''(x) " 2x

 (iii)  (�1
e, 2e), maximum; 

  (1
e, �2

e), minimum

  6 (i) 
ex x

x
– 1

2

( )

 (ii) (1, e), minimum

 (iii) 

  7 (i) y " lnx ¡�d
d

y
x

 " 1x ;

  y " x lnx ¡�d
d

y
x

 " 1 � lnx

  8 (i) (1 � x)e�x

 (ii) (1, 1e)
  9 (i) 1

 (ii)  f'(x) " 
1

2
– ln x
x

; 

  f ''(x) " 
2 3

3
ln x

x
–

 (iii) 1
e

; � 1
3e

10 (4, 4e�2)

11 (i) (1, ��e)

 (ii) Minimum

12 (ii) ey � 2x � 1 " 0

Activity 4.2 (Page 92)

When y " sin x the graph of d
d

y
x

 

against x looks like the graph of cos x.

●? (Page 93)

No. You can see this if you draw 
both graphs.

●    (Page 93)

This is a demonstration but ‘looking 
like’ is not the same as proof.

Activity 4.3 (Page 93)

y " tan x " sin
cos

x
x

d
d

y
x  " 

cos cos – sin –sin
cos

x x x x
x

( ) ( )
2

      " cos sin
cos

2 2

2
x x

x
�  " 1

2cos x
      " sec2x

Exercise 4C (Page 96)

  1 (i) �2 sin x � cos x

 (ii) sec2x

 (iii) cos x � sin x

  2 (i) x sec2x � tan x

 (ii) cos2
 x � sin2

 x "�cos 2x

 (iii) ex(sin x � cos x)

  3 (i) x x x
x

cos – sin
2

 (ii) ex x x(cos sin )� sec2x

 (iii) 

e

y

1 x

dy
dx

–2U –U U �U0

–1

1

x

dy
dx

1

–2U –U U �U0

–1

y

1

–2U –U U �U0

–1

x

x

y = cosx

sin ( – sin ) – cos ( cos )
sin

x x x x x
x

1
2

�
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P2   4 (i) 2x sec2(x2 ����

 (ii) 2 cos 2x 

 (iii) 1
tan x

  5 (i) � sin
cos

x
x2

 (ii) ex(tan x + sec2x)

 (iii) 8x cos 4x2

 (iv) �2 sin 2xecos
 
2x

 (v) 1
1 � cosx

 (vi) 1
sin cosx x

  6 (i) cos x � x sin x

 (ii) �1

 (iii) y "��x

 (iv) y " x � 2π

  7 
d
d

y
x

 " ex
 cos 3x � 3ex

 sin 3x

 
d
d

2

2
y

x
 " �6ex sin 3x � 8ex

 cos 3x

  8 (i) e�x(cos x � sin x)

 (iii) (0.79, 0.32), (�2.4, �7.5)

 (iv)  Differentiate with respect 
to x again and evaluate the 
second derivative at the 
stationary points.

  9 Maximum at x = 1
6
π ,

 minimum at x = 5
6
π

10 Maximum at x = 1
12
π, 

 minimum at x = 5
12
π

11 (i) 1
4
U

 (ii) Maximum

12 ��1
4
U

●? (Page 99)
The mapping is one-to-many.

Exercise 4D (Page 102)

  1 (i) 4y3d
d

y
x

 (ii) 2x � 3y2d
d

y
x

 (iii) x
d
d

y
x

 � y + 1 � 
d
d

y
x

 (iv) �sin y 
d
d

y
x

 (v) e(y � 2)d
d

y
x

 (vi) y3 � 3xy2d
d

y
x

 (vii) 4xy 5 � 10x2y4d
d

y
x

 (viii) 1 � 1
y  

d
d

y
x

 (ix) xeyd
d

y
x

 � ey � sin y 
d
d

y
x

 (x) x
y

2
 d
d

y
x

 � 2x ln y

 (xi) esiny � x cosy esiny
d
d

y
x

 
 (xii) tan y � x y y

x
sec2 d

d

  ��(tan x d
d

y
x

 � y sec2x)

  2 1
5

  3 0

  4 (i) 0

 (ii) y " �1

  5 (1, �2) and (�1, 2)

  6 (i) y
x

� 4
6 –

 (ii) x � 2y � 11 " 0

 (iii) (2, �4 1
2)

 (iv) 

         Asymptotes x " 6, y " �4

  7 (i) ln y " x ln x

 (ii) 1
y

y
x

d
d  " 1 � ln x

 (iii) (0.368, 0.692)

 (iv) 

  8 (ii) (1, �3), (��, 3)

  9 (ii)  4x � 5y " �12

10 (ii)  (2, 1), (�2, �1)

11 (i) 3 2
3

2

2 2

x xy
x y

−
+

 (ii) 8x � 7y � 9 " 0

12 (a, �2a)

●? (Page 105)
At points where the rate of change of 
gradient is greatest.

Exercise 4E (Page 112)

  1 (i) t

 (ii) 1
1
+
+

cos
sin

θ
θ

 (iii) t
t

2

2
1
1

�
–

 (iv)  �2
3 cot θ

 (v) t
t

– 1
1�

 (vi) �tan θ

 (vii) 1
2et

 (viii) ( )
( )
1
1

2

2
+
−

t
t

  2 (i) 6

 (ii) y " 6x � 3

 (iii) 3x � 18y � 19 3 " 0

  3 (i) ( 1
4, 0)

 (ii) 2

 (iii) y " 2x � 1
2

 (iv) (0, �1
2)

  4 (i) x � ty � at2 " 0

 (ii) tx � y " at3 � 2at

 (iii) (at2 � 2a, 0), (0, at3 � 2at)

6

4

y

xO

y

x1O

1
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P2   6 (i) � b
at 2

 (ii) at2y � bx " 2abt

 (iii) X(2at, 0), Y(0, 2b
t )

 (iv) Area " 2ab

  7 (ii) y " tx � 2t2

 (iii) [2(t1 � t2), 2t1t2]

 (iv) x " 4

  8 (i) t  " 1

 (iii) x � y " 3

 (v) (�8, �5)

  9 (i) t  " �2

 (iii) y " 2x � 6

 (iv) (�5, 9)

10 (i) � 
3
4

cos
sin

t
t

 (ii) 3x cos t � 4y sin t " 12

 (iii) t " 0.6435 � nπ

11 (iii) 1 1
3

2
3

+⎛
⎝⎜

⎞
⎠⎟,

12 (i) 2 1
3 2
t t
t
( )�

�

 (ii) (6, 5)

13 2 sin θ

14 (ii) ln3
2

16 (i)  –tan t 

Chapter 5

Activity 5.1 (Page 119)

  1  The areas of the two shaded 

regions are equal since y " 1
x  is 

 an odd function.

●    (Page 120)

The polynomial p2(x) can take the 
value zero.

x2 � 2x � 3 " (x � 1)2 � 2 so is 
defined for all values of x and is 
always greater than or equal to 2.

Exercise 5A (Page 120)

  1 (i) 3 ln�x�� c

 (ii) 1
4 ln�x�� c

 (iii) ln�x � 5�� c

 (iv) 1
2 ln�2x � 9�� c

  2 (i) 1
3

 e3x � c

 (ii) �1
4 e�4x � c

 (iii) �3e�x/3 � c

 (iv) � 2
5e x

 � c

 (v) ex � 2e�2x � c

  3 (i) 2(e8 � 1) " 5960

 (ii) ln 49
9  " 1.69

 (iii) 4.70

 (iv) 0.906

  4 (i) P(2, 4); Q(�2, �4)

 (ii) 8.77; 14.2 (to 3 s.f.)

  5 (i)  4; 5 ln 5 � 4

 (ii) Reflection in y " x

 (iv) (a) 3(5 ln 5 � 4)

  (b) 4 ln 3 � 5 ln 5 � 4

  6 (i) 
2

2 3x �

 (iii)  Quotient = 2x � 1, 
remainder = �3

  7 (i) y x x= + −−1
2

e e2 2 3
2

 (ii) Minimum when x " 0.231

  8 (i) y " 3x � 3 

 (ii) (a) 4

  9 1
2(e2 � 1)

Investigations (Page 123)

A series for ex

a0 " 1

a1 " 1

a2 " 1
2!

a3 " 1
3!

a4 " 1
4!

e " 2.718 281 83 (8 d.p.)

Compound interest

Scheme B: R " 2.594

Scheme C: R " 2.653

1000 instalments: R " 2.717

104 instalments: R " 2.718

106 instalments: R agrees with the 
value of e to 5 d.p.

Exercise 5B (Page 126)

  1 (i) �cos x � 2 sin x � c

 (ii) 3 sin x � 2 cos x � c

 (iii) �5 cos x � 4 sin x � c

 (iv) 4 tan x + c  

 (v) �1
2 cos(2x + 1) + c 

 (vi)  1
5
 sin(5x – U) + c

 (vii) 3 tan 2x + c 

 (viii) tan 3x + 1
2 cos 2x + c 

 (ix) 4 tan x � 1
2 sin 2x + c

  2 (i) 1
2 

 (ii) 1 

 (iii) 3 1
2
�

 (iv) 3
4

 (v) 1
3

 (vi) 3 1
2
�

 (vii) 0

 (viii) 1

 (ix) 3
4

  3 (ii)  3
8

  4 (i) (a)  1
2x + 1

4 sin 2x + c

  (b)  U
4

 (ii) (a)  1
2x – 1

4 sin 2x + c

  (b) π
6

3
8

−
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P2   6 (ii) U U
12

5
12

,

 (iii) U
2

  7 (i) 1
2

1
2

2� cos x

 (iii) 1
6

1
8

3π −

  8 (ii) 1
4

5 2( )π −

  9 (ii) 2 3
2

− π

Activity 5.2 (Page 130)

For example 

32 strips: 8.398 

50 strips: 8.409 

100 strips: 8.416 

1000 strips: 8.420

●?    (Page 130)

The curve is part of the circle centre 

2 01
2

,( ) , radius 21
2.

Area required is half a major  
segment " 8.4197 units2.
Error from 16-strip estimate is  
about 0.7%.

●?    (Page 131)

(i)  Underestimates – all trapezia 
below the curve

(ii) Impossible to tell

(iii)  Overestimates – all trapezia 
above the curve

Exercise 5C (Page 131)

  1 (i) 458 m

 (ii)  A curve is approximated by 
a straight line. The speeds 
are not given to a high level 
of accuracy.

  2 (i) 3.1349...

 (ii) 3.1399..., 3.1411...  

 (iii) 3.14

  3 (i) 7.3  

 (ii) Overestimate

  
  4 (i) 

x y

2 2

3 2.2361

4 2.4495

5 2.6458

6 2.8284

7 3

 (ii) 12.6598; too small

 (iii) 21
3 square units

 (iv) 122
3 square units, 0.054%

  5 (i) 

 (ii)  2.179 218, 2.145 242, 
2.136 756, 2.134 635

 (iii)  2.13

  6 (i) 

 (ii)  0.458 658, 0.575 532, 
0.618 518, 0.634 173, 
0.639 825

 (iii) 0.64

  7 (i) 

 (ii) 3, 3.1, 3.131 176, 3.138 988

 (iii)  3.14 (This actually converges 
to U.)

  8 (i) 2, 2, 4, 4

 (ii) 

 

 (iii) 4

  9 (i) (1, 0)

 (ii) 
1
e  

 (iii) 0.89

 (iv) Underestimate

10 (i) (0, 1)

 (ii) 1
4
U 

 (iii) 1.77

 (iv) Underestimate

y

x

1

y

x

1

0 1

y

x

2

4

1
0

0 1 2

y

x

1

2

3

0 1 2

y

x

1

2

3

0 1 2

y

x0.5 1.5

1

2

3

0 1 2

y

x0.5 1.5

1

2

3
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P2 11 (i) 2

 (iii) 0.95

12 (i) 1.23

 (ii)  One of the intervals gives an 
overestimate and the other 
gives an underestimate. 

Chapter 6

●? (Page 136)

(i), (ii) and (iv) can be solved 

algebraically; (iii) and (v) cannot.

●? (Page 138)
0.012 takes 5 steps

0.385 takes 18 steps

0.989 takes 28 steps

In general 0.abc takes (a � b � c � 2) 
steps.

Activity 6.1 (Page 139)

For 1 d.p., an interval length of  
" 0.05 is usually necessary, 
requiring n " 5. However, it depends 
on the position of the end points of  
the interval.

For example, the interval  
[0.25, 0.3125] obtained in 4 steps 
gives 0.3 (1 d.p.) but the interval 
[0.3125, 0.375] obtained in 4 steps 
is inconclusive. As are the interval 
[0.343 75, 0.375] obtained in 5 steps, 
the interval [0.343 75, 0.359 375] 
obtained in 6 steps, the interval  
[0.343 75, 0.351 562 5] obtained in 
7 steps, etc.

In cases like this, 2 and 3 d.p.  
accuracy is obtained very quickly 
after 1 d.p. 

The expected number of steps for  
2 d.p., requiring an interval of 
length " 0.005, is 8 steps.

Exercise 6A (Page 141)

  1 (ii)  

 (iii) 1.154

  2 (i) 2

 (ii) [0, 1]; [1, 2]

 (iii) 0.62, 1.51

  3 (i) 

 (ii)  2 roots

 (iii) 2, –1.690

  4 –1.88, 0.35, 1.53

  5 1.62, 1.28

  6 (i) [�2, �1]; [1, 2]; [4, 5]

 (ii)  

 (iii) �1.51, 1.24, 4.26

 (iv) a " �1.511 718 75, n " 8

  a " 1.244 384 766, n " 12

  a " 4.262 695 313, n " 10

  7 (i) [1, 2]; [4, 5]

 (ii) 1.857, 4.536

  8 (i) (a)  

  (b) No root

  (c)  Convergence to a 
non-existent root

 (ii) (a) 

  (b) x " 0

  (c) Success

 (iii) (a) 

  (b) x " 0 

  (c) Failure to find root

Investigation (Page 142)

(i)  Converges to 0.7391 (to 4 d.p.) 
since cos 0.7391 " 0.7391 
(to 4 d.p.).

(ii) Converges to 1.

  x   ! x for x > 1, x  > x for 

x < 1 and 1 " 1

(iii)  Converges to 1.6180 (to 4 d.p.) 
since this is the solution of  

x " x � 1 (i.e. the positive 
solution of x2 � x � 1 " 0).

●? (Page 144)
Writing x5 � 5x � 3 " 0

as    x5 � 4x � 3 " x

gives   g(x) " x5 � 4x � 3

Generalising this to 

 x5 � (n � 5)x � 3 " nx

gives g(x) " 
x n x

n

5 5 3+ ( ) +–

and indicates that infinitely many 
rearrangements are possible.

x

y

O
–5

x

y

O–2

1

2 y = 2x

y = x + 2

x

f(x)

O

x

y

O

x

y

O

x

y

O

1
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P2 ●    (Page 146)

Bounds for the root have now been 
established.

Activity 6.2 (Page 148)

x0 " �2 gives divergence to �h

x0 " �1 gives convergence to 0.618

x0 " 1 gives convergence to 0.618

x0 " 2 gives divergence to �h.

Exercise 6B (Page 148)

  1 (ii)  1.521

  2 (ii) 2.120

  3 (iii) 1.503

  4 (i)  

 (ii)  Only one point of 
  intersection

 (iii) F(x) " ln(x2 � 2) is possible.

 (iv) 1.319

  5 (i) 

 (ii) 0.747

  6 (i) 

 (ii) 0.739 09

  7 (i)  1.68

 (ii)  x x
x

= + =3
4

2 83
4; α

  8 (i)  2.29

 (ii)  x x
x

= + =2
3

4 122
3; α

  9 (i) 

 
 

 (iv) 0.58

10 (iii)  1.08

11 (i)  − −( )1
2

1
2

,
e

 (iii)  1.35

12 (i) 

 
 
 
 
 
 
 
 
 (iv)  x = 1.31

13 (i)  3 and 4

 (ii)  3.43

14 (iii)  1.77

Chapter 7

Investigation (Page 154)

1.01, 1.02, 1.03

1 � x  ~ 1 � 12x    or   x  ~ 12(1 � x)

k " 12
0.20

●    (Page 156)

(1 � x)1/2 " 3 but substituting x " 8 
into the expansion gives successive 
approximations of 1, 5, �3, 29, �131, 
… and these are getting further 
from 3 rather than closer to it.

Investigation (Page 157)

�0.19 " x " 0.60

�0.08 " x " 0.07

Activity 7.1 (Page 157)

For a x a " 1 the sum of the geometric

series is 
1

1 � x  which is the same as 

(1 � x)�1.

Investigation (Page 159)

(1 � x)�3 " 1 � 3x � 6x2 � 10x3 … 

The coefficients of x are the 
triangular numbers. 

●? (Page 160)

101 " 100 101w .

 " 10 101.

 " 10(1 � 0.01)
1
2

 " 10[1 � 1
2
(0.01) 

 � 
1
2

1
2

2
( )( )–

!
 (0.01)2 � …]

 " 10.050 (3 d.p.)

21–1–2
O

x

y

0.618

At this root 
gradient $ 1 
so the root is 

not found.

At this root 
gradient $ 1 
so the root is 

not found.

At this root         
�1 " gradient " 1 

so the root is found.

x " �1,
gradient " 1.

x " 1,
gradient " 1.

Between x " �1 and x " 1, 
�1 " gradient " 1.

Gradient is 
just greater 

than zero here.

x

y

O

1
2

y = ex

y = x2 + 2

x

y

O other
root

y = ln(x + 1)

y = x2

x

y

O

1

U
2

y = cos x

y = x

y

O 1

1

2

y = cos x

y = 2 – 2x

U
2

x

y

O 1–1–2 2

2y = 2 – x2

y = ln x

x
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P3 ●? (Page 162)

x – 1 is only defined for x $ 1.

A possible rearrangement is 

x x1 1–( ) " x x1 1
1
2

–( )1
2.

Since x $ 1    ¡    0 " 1x  " 1 
the binomial expansion could be 
used but the resulting expansion 
would not be a series of positive 
powers of x .

Exercise 7A (Page 162)

  1 (i) (a) 1 � 2x � 3x2

  (b) a x a " 1 

  (c) 0.43%

 (ii) (a) 1 � 2x � 4x2

  (b) a x a " 12

  (c) 0.8%

 (iii) (a) 1 � x
2

2
 � x

4

8

  (b) a x a " 1

  (c) 0.000 006 3%

 (iv) (a) 1 � 4x � 8x2

  (b) a x a " 12
  (c) 1.3%

 (v) (a) 1
3

 � x
9

 � x
2

27

  (b) a x a " 3

  (c) 0.0037%

 (vi) (a) 2 � 7
4
x  � 17

64
2x

  (b) a x a " 4

  (c) 0.000 95%

 (vii) (a) �2
3
 � 5

9
x  � 5

27
2x

  (b) a x a " 3

  (c) 0.0088%

 (viii) (a) 1
2

 � 3
16
x  � 27

256
2x

  (b) a x�a " 43
  (c) 0.013%

 (ix) (a) 1 � 6x � 20x2

  (b) a x a " 1
2

  (c) 4%

 (x) (a) 1 � 2x2 � 2x4

  (b) a x a " 1

  (c) 0.000 20%

 (xi) (a) 1 � 2
3

2x  � 4
9

4x

  (b) a x a " 1
2

  (c) 0.000 048%

 (xii) (a) 1 � 3x � 7x2

  (b) a x a " 12
  (c) 1.64%

  2 (i) 1 � 3x � 3x2 � x3

 (ii)  1 � 4x � 10x2 � 20x3 
for a x a " 1

 (iii)  a " 25, b " 63

  3 (i) 16 � 32x � 24x2 � 8x3 � x4

 (ii)  1 � 6x � 24x2 � 80x3 

for a x a�" 12

 (iii) a " �128, b " 600

  4 (i) 1 � x � x2 � x3 for a x a " 1

 (ii)  1 � 4x � 12x2 � 32x3 

for a x a " 12

 (iii)  1 � 3x � 9x2 � 23x3 

for a x a " 12

  5 (ii) 1 � x
8

 � 3
128

2x  for a x a " 4

 (iii) 1 � 9
8
x  � 19

128
2x

  6 (i) 1 � y � y 2 � y 3 …

 (ii) 1 � 2
x

 � 4
2x
 � 8

3x

 (iv) x
2

 � x
2

4
 � x

3

8
 � x

4

16
 (v) x " �2 or x $ 2; �2 " x " 2;  

   no overlap in range of  
validity.

  7 1
4

3
4

27
16

2− +x x

  8 1 3
2

2� x

  9 (i) �3

 (ii) �10
3

3x

Exercise 7B (Page 166)

  1 2
3

2

3
a
b

  2 1
9y

  3 x
x

� 3
6–

  4 x
x

�
�

3
1

  5 2 5
2 5

x
x

–
�

  6 
3 4

20
( )a �

  7 
x x

x
( )
( )

2 3
1
�

�

  8 
2

5 2( – )p

  9 a b
a b

–
–2

10 ( )( – )
( )

x x
x x
�

�
4 1

3

11 9
20x

12 x – 3
12

13 a
a

2

2
1
1

�
–

14 5 13
3 2
x

x x
–

( – )( )�

15 
2

2 2( )( )x x+ −

16 
2
1 1

2

2 2

p
p p( – )( )�

17 
a a

a a

2

2
2

1 1
–

( )( )
�

� �

18 
– ( )
( ) ( )
2 4 8

2 4

2

2
y y

y y
� �

� �

19 x x
x

2 1
1

� �
�

20 –( )
( )
3 1

1 2
b

b
�

�

21 
13 5

6 1 1
x

x x
–

( – )( )�

22 
4 3

5 2 2
( – )

( )
x

x �

23 
3 4
2 2 3
a

a a
–

( )( – )�

24 
3 4

2 2

2x
x x x

–
( – )( )�

●? (Page 168)
The identity is true for all values 
of x. Once a particular value of x is 
substituted you have an equation. 
Equating constant terms is  
equivalent to substituting x " 0.
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P3 Exercise 7C (Page 170)

 1 1
2

1
3( – )

–
( )x x �

 2 1 1
1x x

–
( )�

 3 2
4

2
1( – )

–
( – )x x

 4 2
1

1
2( – )

–
( )x x �

 5 1
1

1
2 1( ) ( – )x x�

�

 6 2
2

2
( – )

–
x x

 7 1
1

3
3 1( – )

–
( – )x x

 8 3
5 4

2
5 1( – ) ( )x x

�
�

 9 5
2 1

2
( – )

–
x x

10 2
2 3

1
2( – )

–
( )x x �

11 8
13 2 5

9
13 4( – ) ( )x x

�
�

12 
19

24 3 2
11

24 3 2( – )
–

( )x x �

13 1
1

2
2

3
3( ) ( ) ( )x x x� � � � �

14 4
1

3
3

2
2 1( )x x x− + −( ) + +( )

15 1
2

2
2

1
2 3( ) ( ) ( )+ − − − +x x x

Exercise 7D (Page 172)

  1 (i) 9
1 3

3
1

2
1 2( – )

–
( – )

–
( – )x x x

 (ii) 4
2 1

2
12( – )

–
( )x

x
x �

 (iii) 1
1

1
1

1
22( – )

–
( – ) ( )x x x

�
�

 (iv) 5
8 2

6 5
8 42( – )

–
( )x

x
x

�
�

 (v) 5 2
2 3

2
22

–
( – ) ( )

x
x x

�
�

   Can be taken further using 
surds.

 (vi) 2 1 3
2 12x x x

– –
( )�

 (vii) 
10

3 1
3

2
x

x x( – )
–

   Can be taken further using 
surds.

 (viii) 
1

2 1
1

12( ) ( )x x�
�

�

 (ix) 8
2 1

4
2 1

3
2( – )

–
( – )

–
x x x

  2 A " 1,    B " 0,    C " 1

  3 A " 1,    B " 0,    C " �4

Investigation (Page 174)

The binomial expansion is 

1 � x � 3x2.

The expansion is valid when a x a " 12.

Which method is preferred is a  
matter of personal preference for 

(a) and (b) but for (c) must be (iii).

Exercise 7E (Page 174)

  1 (i) 4 � 20x � 72x2

 (ii) �4 � 10x � 16x2

 (iii) 5
2

11
4

33
8

2
� �x x

 (iv) – – –1
8

5
16 8

2x x

  2 (i) 
2

2 1
3

2( – )
–

( )x x �

 (ii)  1 � 2x � 4x2 � … 

a " 1, b " 2, c " 4, for a x a " 12

 (iii) 1
2

 � x
4

 � x
2

8
 for a x a " 2

 (iv) �7
2

 � 13
4
x  � 67

8
2x ; 0.505%

  3 (i) 2 � x � x2

  2
2

1
1( – )

–
( )x x�

 (ii) a x a < 1

  4 (i) 1
1

9
3( – )

–
( – )x x

 (ii) 0, 11
2

 (iii) 4
3

8
3

2x x�

  5 (i) 2
2

2 4
1 2( ) ( )− + +
+x

x
x

 (ii) 5 5
2

15
4

15
8

2 3+ − −x x x

  6 (i) 2
2

1
12( ) ( )+ + −

+x
x

x

 (ii) 1
2

5
4

9
8

2 3x x x+ −

  7 (i) 1
1

2
1 2

4
2( – ) ( ) ( )x x x

+ + − +

 (ii) 1 2 17
2

2− +x x

Chapter 8

●? (Page 177)
It is the same as

 x x
1

4

µ d .

●? (Page 179)
Yes: Using the chain rule 

 
d
d

d
d

d
d

y
x

y
u

u
x

= ×

Integrating both sides with respect 
to x

 y = µ(d
d

d
d

y
u

u
x

w )dx = µ(d
d

y
u)du

Activity 8.1 (Page 181)

 2
5(x � 2)5/2 � 43(x � 2)3/2 � c

� " 2
15(x � 2)3/2 [3(x � 2) � 10] � c

� " 2
15(3x � 4)(x � 2)3/2 � c

Exercise 8A (Page 181)

  1 (i) 1
8(x3 � 1)8 � c

 (ii) 1
6(x 2 � 1)6 � c

 (iii) 1
5(x3 � 2)5 � c

 (iv) 1
6(2x 2 � 5)3/2 � c

 (v) 1
15(2x  � 1)3/2(3x  � 1) � c

 (vi) 2
3(x  � 9)1/2(x  � 18) � c

  2 (i) 222 000

 (ii) 586

 (iii) 18.1

  3 (i) 221
2

 (ii)  11
9

  4 (i) A(�1, 0), x # �1

  5 (i) (a) 
( )1

4

4� x
 � c

  (b) 22
5

 (ii) 1
3(2 2 � 1) ~ 0.609
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P3   6 (i) (a) 8 x  � 3
2 2x

 � c

  (b) 2(1 � x2)3/2 � c

 (ii) k " 2, a " 1, b " 2; 32.5

Exercise 8B (Page 184)

  1 (i) ln�x2 � 1�� c

 (ii) 1
3 ln�3x2 � 9x � 1�� c

 (iii) 4ex3 � c

  2 (i) 0.018

 (ii) 0

  3 (i) 1
2(e � 1)

 (ii) 1
2(e4 � 1)

 (iii) 
1
2(e � e4) � 1 " 27.7 (to 3 s.f.)

  4 0.490; 0.314 

  5 (i) �(x � 2)e�x

 (ii) –(x � 3)e�x

 (iii) (–2, e2)

 (iv) �e2; max. at x " �2

 (vi) 3 � 4e

  6 (i) 1
5(2x � 3)5/2 � (2x � 3)3/2 � c

 (ii) 
ln x

x

� 2

2
; 2 x  ln x � c

 (iii) (a) �2xe�x 2

  (b) 3x2e�x 6

  7 (i) (a) 
1
2 ln 3

  (b) 9 2� x  � c

 (ii) (b) ( 1
2

1
2

1 2, – /e ) and 

   (– , – – /1
2

1
2

1 2e )
  (c) 0.074

  8 (i)

 (ii) ln(e2 1
2
� ) ~ 1.434

 (iii) ln(e2 1
2
� ) ~ 1.434

 (iv)   The same. The substitution 
e x " t 2 transforms the 
integral in part (ii) into that 
in part (iii).

  9 (i) (a) �4xe�2x2

  (b) e�2x2 � 4x 2e�2x2

 (ii) 
1
4(1 � e�2k2)

 (iv) Max. at 1
2

1
2

1 2, – /e⎛
⎝⎜

⎞
⎠⎟

10 (i) 1

 (ii) 1
2

2 1ln p +( )
 (iii) 2.53

Exercise 8C (Page 189)

  1 (i) 1
3 sin 3x � c

 (ii) cos(1 � x) � c

 (iii) �1
4 cos4

 x � c

 (iv) ln a�2 � cos x a � c

 (v) �ln a cos x a � c

 (vi) �1
6(cos 2x � 1)3 � c

  2 (i) �cos(x2) � c

 (ii) esin
 
x � c

 (iii) 
1
2 tan2

 x � c

 (iv) 
–

sin
1
x  � c

  3 (i) 1

 (ii) 1
16

 (iii) 1

 (iv) e � 1

 (v) ln 2

  4 (ii) 1
2

  5 (i) 2 1
3

cos θ −( )π
  6 (ii) 1

6
1
4 3π −

●? (Page 190)
Substitution using u " x2 � 1 needs 
2x in the numerator. Not a product, 
not suitable for integration by parts.

Exercise 8D (Page 193)

  1 (i) ln ²3 2
1
x

x
–

– ² � c

 (ii) 1
1 – x

 � ln ² x
x

– 1
2 3� ² � c

 (iii) ln² x

x

– 1

12 � ² � c

 (iv) ln²( )x
x
�

�
1

2 1

2

² � c

 (v) ln² x
x1 – ² � 1x  � c

 (vi) 1
2ln² x

x
�
�

1
3² � c

 (vii) ln² x
x

2 4
2
�

� ² � c

 (viii) ln²2 1
2

x
x

�
� ² � 

1
2 2 1x +( ) � c

  2 – x
x x2 4

1
3�

�
–

,  ln( 2
6 )

  3 
1 2 4

2 12x x x
– �

�

  4 (i) (a) 2
1 2

1
1– x x

� �

  (b) ln(11
8 ) " 0.318 45

 (ii) (a) 3 � 3x  � 9x2 ��…

  (b) 0.318 00

  (c) 0.14%

  5 (i) A " 1, B " 3, C " �2

 (ii) 2 � ln(125
3 ) " 5.73

  6 (i) B " 1, C " 16

 (ii) 33
2  ln 2

 (iii) 8 � 5x  � 2x2 � x
4

2  for a x  a " 1

  7 (i) A = 1, B = 2, C = 1, D = –3

  8 (i) 1 1
2 1

3
2 3

+ + − +( ) ( )x x

Activity 8.2 (Page 195)

(i) (a) d
dx

 (x  cos x) " �x  sin x  � cos x

 (b)  ¡ x  cos x 

  " µ�x  sin x dx  � µcos x  dx

   ¡ µx  sin x  dx 

  " �x  cos x  � µcos x  dx

xO

1

1
2

y
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P3  (c)  ¡ µx  sin x  dx 

  " �x  cos x  � sin x  � c

(ii) (a) d
dx

 (x e2x) " x w 2e2x � e2x

 (b) ¡ x e2x " µ2x e2x dx � µe2x dx

  ¡ µ2x e2x dx " x e2x � µe2x dx

 (c) ¡ µ2x e2x dx " x e2x � 1–
2e2x � c

●? (Page 195)
Each of the integrals in Activity 8.2 is 

of the form µx d
d

v
x

 dx and is found by 

starting with the product xv.

Exercise 8E (Page 199)

  1 (i) (a) u " x , d
d

v
x

 " ex

  (b) xex � ex � c 

 (ii) (a) u " x , d
d

v
x

 " cos 3x

  (b) 1
3x sin 3x � 19 cos 3x � c

 (iii) (a) u " 2x � 1, d
d

v
x

 " cos x

  (b) (2x � 1)sin x � 2 cos x � c

 (iv) (a) u " x , d
d

v
x

 " e�2x

  (b) �1
2x e�2x � 14e�2x � c

 (v) (a) u " x, d
d

v
x

 " e�x

  (b) �x e�x � e�x � c

   (vi) (a) u " x, d
d

v
x

 " sin 2x

  (b) �1
2x cos 2x � 14 sin 2x � c

  2 (i) 1
4

 x 4
 ln x � 1

16x4 � c

   (ii) xe3x � 13e3x � c

   (iii) x sin 2x � 12 cos 2x � c

 (iv) 
1
3x3

 ln 2x  � 19x3 � c

  3 2
15(1 � x)3/2(3x  � 2) � c 

  4 
1

15(x  � 2)5(5x  � 2) � c

  5 (i) x  ln x  � x � c

 (ii) x  ln 3x � x � c

 (iii) x  ln px � x � c

  6 x2ex � 2x ex � 2ex � c 

  7  (2 � x)2
 sin x � 2(2 � x)cos x 

� 2 sin x � c

Exercise 8F (Page 201)

  1 (i) 2
9e3 � 19

   (ii) �2

   (iii) 2e2

   (iv) 3 ln 2 � 1

   (v) U
4

   (vi) 64
3  ln 4 � 7

  2 (i) (2, 0), (0, 2)

 (ii) 

 (iii) e–2 � 1

3 (i) 

 (ii) U

  4 5 ln 5 � 4

  5 π
2

1−

  6 � 4
15 so area " 4

15
 square units 

  7 x " 0.5; area " 0.134 square units

  8 The curve is below the trapezia.

  9 (i) 1
k

x sin kx � 
1
2k  cos kx � c

 (ii) cos 2x � cos 8x

11 (ii) 

 (iv) 2.31

12 (i) 1
2

 (ii) π 2 3e −( )
●? (Page 204)
You will return to these integals in 
Activity 8.3.

Activity 8.3 (Page 205)

 (i)  This is a quotient. The derivative 
of the expression on the bottom 
is not related to the expression 
on the top, so you cannot use 
substitution. However, as the 
expression on the bottom can 
be factorised, you can write it as 
partial fractions. 

  µ x
x x

–
–

5
2 32 �

 dx 

 " µ 2
3( )x �

 dx � µ 1
1( – )x

 dx

       " 2 ln a x � 3 a � ln a x � 1 a � c

(ii)  The derivative of the expression 
on the bottom line is 2x � 2, 
which is twice the expression on 
the top line. So the integral is of 
the form

 kµ  
f'( )
f(

x
x)

 dx " k  ln a f(x) a � c.

  This integral can also be found  
using partial fractions, but using 
logarithms is quicker.

 µ x
x x

�
�

1
2 32 –

 dx 

 " 12 µ
2 2

2 32
x

x x
�

� –
 dx

 " 12 ln a x2 � 2x � 3 a � c

2O

2

x

y = (2 – x)e–x

y

O

y

x

y = xsin x

U

 y

2

 y = x

x

 y = 2 + e
1
2

– x

3
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P3 (iii)  This is a product of x and 
ex. There is no relationship 
between one expression and the 
derivative of the other, so you 
cannot use substitution. As one 
of the expressions is x , you can 
use integration by parts.

 µxex dx " xex � µex dx

   " xex � ex � c

(iv)  This is also a product, this time 
of x and ex 2. ex 2 is a function of 
x2, and 2x is the derivative of x2, 
so you can use the substitution  
u " x2.

 Using u " x2

 µxex 2 dx " µ 1
2eu du 

 = 12eu � c

 = 12ex 2 � c

(v)  In this case the numerator is the 
differential of the denominator 
and so the integral is the natural 
logarithm of the modulus of the 
denominator.

 µ 2
2
x x

x x
x�

�
cos
sin

d

  Since d
dx

 (x2 � sin x) " 2x � cos x 

 the integral is ln a x2 � sin x a  � c.

(vi)  This is a product: sin2
 x is a 

function of sin x , and cos x is the 
derivative of sin x , so you can 
use the substitution u " sin x.

 Using u  " sin x

 µcos x sin2
 x dx " µu2 du  

 " 13u3 � c

 " 13 
sin3

 x � c

Exercise 8G (Page 206)

  1 (i) 1
3 sin(3x � l) � c

 (ii) –
( – )

1
12x x�

 � c

 (iii) �e1�x � c

 (iv) 1
2 sin 2x � c

 (v) x ln 2x � x � c

 (vi) 
–

( – )
1

4 12 2x
 � c

 (vii) 1
3(2x � 3)2/3 � c

 (viii) ln ²x
x

– 1
2� ² � 1

1x –
 � c

 (ix) 1
4x4

 ln x � 1
16 x4 � c

 (x) ln ² x
x

–
–

3
2 1² � c

 (xi) 
1
2ex 2�2x � c

 (xii) �ln (sin x � cos x) � c

 (xiii) �1
2x2

 cos 2x � 12x sin 2x 

  � 14 cos 2x � c

 (xiv) �1
2 cos 2x � 16 cos3

 2x � c

  2 (i) 8
3

 (ii) 
1
3 ln 4

 (iii) 48 � 8 ln 4     

 (iv) 2
3

 

 (v) 8
3 ln 2 � 79

  3 4
3

  4 1
3(2 2 � 1)

  5 0.24

  6 1
8π � 14

  7 (i) �1
2xe�2x � 14e�2x � c

 (ii) 0.112

  8 (i) �1
2 cos(2x � 3) � c

 (ii) 
3
4e4 � 14

 (iii) 
1
2 ln a x2 � 9 a � c

  9 (i) 38
9

 (ii) 1
4

3
4 2–
e

10 1
4

1
4

3
4 2, –
e

Chapter 9
Exercise 9A (Page 212)

  1  
d
d

v
t  

is the rate of change of 

 velocity with respect to time, 
 i.e. the acceleration.

  The differential equation tells 
you that the acceleration is 
proportional to the square of 
the velocity.

  2 
d
d

s
t

k
s

" 2

  3 
d
d

h
t

 " k ln(H � h)

  4 d
d
m
t

k
m

"

  5 d
d
P
t

 " k P

  6 d
d

e
V  " kθ

  7 d
d
θ θ
t
= –( – )15

160

  8 d
d
N
t

N"
20

  9 d
d

v
t v

" 4

10 
d

d

'A

t

k

A

k

A
= =2 π

11 d
d
θ
s

s= –
4

12 d
d
V
t

V= – 2
1125π

13 
d
d

h
t

k h" ( – )2
100

Investigation (Page 214)

H is about (70s N, 35s W) and L is 
about (62s N, 5s W) so they are 
separated by 30s in longitude at a 
mean latitude of 66s. Reference to 
the scale shows this to be about 900 
nautical miles.

1035

996

957

0 900
nautical miles

is
ob

ar
s
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P3 The mean level is 996 and the  
amplitude 39 so a model is 

       p " 996 � 39 cos( Ux
900) 

and   
d
d

p
x

 " –39
900

U sin( Ux
900)

or      d
d

p
x

 " �a sin bx    

with a " 0.136 and b " 0.0035.

The model covers the main features 
of the situation.

●? (Page 215)

ln a�y  a�� c1 " 1
2
x2 � c2 

can be rewritten as 

ln a�y  a " 12x2 � (c2 � c1).

Exercise 9B (Page 217)

  1 (i) y " 13x3 � c

 (ii) y " sin x � c

 (iii) y " ex � c

 (iv) y " 23x 3/2 � c

  2 (i) y " � 2
2( )x c�

 (ii) y2 " 23x3 � c

 (iii) y " Aex

 (iv) y " ln a ex � c a

 (v) y  " Ax

 (vi) y  " (1
4x2 � c)2

 (vii) y " � 1
(sin )x c�

 (viii) y2 " A(x2 � 1) � 1

  (ix) y " �ln(c � 12x2)
 (x) y3 " 32x2

 ln x  � 34x2 � c

Exercise 9C (Page 221)

  1 (i) y " 13x3 � x � 4

 (ii) y = ex3/3

 
(iii) y " ln(1

2x2 � 1)
 (iv) y " 1

2( – )x

 (v) y " e(x2�1)/2 � 1

 (vi) y " sec x

  2 (i) θ " 20 � Ae�2t

 (ii) θ " 20 � 15e�2t

 (iii) t " 1.01 hours

  3 (i) N " Aet

 (ii) N " 10et

 (iii)  N tends to h, which would 
never be realised  because of 
the combined effects of food 
shortage,  predators and  
human controls.

  4 d
d

s
t s

" 2; s " 4t c�

  5 (i) 1
3

1
3 3y y

�
( – )

 (ii) 1
3 ln² y

y3 – ² � c or 13 ln² Ay
y3 – ²

 (iii) y " 3
4

3

3
x

x( )�
   (x ! !)

  6 y " 2 � e�kt

   7 (i)  N  " 1500e0.0347t  
" 1500 w 2t/20

 (ii) N " 24 000

 (iii) 11 hours 42 minutes

  8 (ii) 1
1

1
1x x–

– �

 (iii) y " 
( )
( – )
x
x
� 1

2 1
 e3�x   (x & ±1)

  9 (i) d
d

r
t

k
r

" 2

 (ii) k " 5000; 141 m (3 s.f.)

 (iii) d
d

r
t

k

r t
=

+
1

2 2( )
; k1 " 10 000

 (iv) 104 m (3 s.f.)

10 (i) 1
3 2

1
3 1( – ) ( )x x

�
�

 (ii) 1
3

 (iv) 1.18 hours (2 d.p.)

 (v) 0.728 kg

11 (i) 2x  sin 2x � cos 2x � c

 (iii)  y2 "  4x2 � 4x  sin 2x 
� 2 cos 2x � 1

12 (i) 1
1 1 2� �x

x
x

–

 (iii) 1 � x x2 4

2
3
8

� ; 

  1 � x � x x2 3

2 2
–  � 3

8
3
8

4 5x x�

13 (i) 3
3 1

1
( – )

–
x x

 (iii) t " 1.967 (3 d.p.)

 (iv) 500 and 3550

14 (ii) cot x ; ln(sin x) � c

 (iii) y " 0.185 (3 s.f.); minimum

15 (i) 1
4

1
4 4ln ln( )y y� �

 (ii) 
4

3 14e− +x

 (iii) The value of y tends to 4.

16 (i)  θ = + −A kt( )1 3e

 (iii)   7
3
A

17 (i) tan− −−( )1 21
2

1
2e t

 (ii) The value of x tends to tan�11
2.

 (iii)  As 12
1
2

2� �e t  increases so does

  tan− −−( )1 21
2

1
2e t .

18 (iii) 100 10
10

20ln +
−( ) −h

h
h

3

2

y

2 _NW_

N ! �

3

y

2 _NW_

N � �
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P3 Investigation (Page 226)

Using the assumptions in Exercise 
9A, question 7: the rate of cooling is 
proportional to the temperature of 
the tea above the surrounding air. 
The initial temperature is 95sC and 
the cooling rate is 0.5sCs�1. So

 θ " 15 � 80e�t/160.

Adding 10% milk at 5sC gives

 θ " 15 � 71e�t/160.

The final temperature is lower if the 
milk is added at the end.

Chapter 10

 ●  (Page 228)

O
�q

P " O
�q

A � λ(O
�q

B � O
�q

A)

       " (1 � λ)O
�q

A � λO
�q

B 

Activity 10.1 (Page 229)

(ii) −
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

2
9

0
5

2
1

3
1

3

2

1
2

,
–

,
–

, ,

⎞⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

, ,4

3

8

11

(iv) 0, 1, 1
2

3
4,

(v) (a) It lies between A and B.

 (b) It lies beyond B.

 (c) It lies beyond A.

Activity 10.2 (Page 231)

±2 �
2

� � � x
±2

2

�

�

�

y

�LLL� �Y��LL�

�L��		�LY�

 

(i) and (iv) are the same since putting 

λ " �1 in (i) gives 1
3–

⎛
⎝⎜

⎞
⎠⎟

 

and 
1
2

⎛
⎝⎜

⎞
⎠⎟  is parallel to 3

6
⎛
⎝⎜

⎞
⎠⎟

.

(iii) is parallel to (i) since the 
direction vector is the same.

(iv) is parallel to (ii) since 

 –1
2

⎛
⎝⎜

⎞
⎠⎟  " � 1

2–
⎛
⎝⎜

⎞
⎠⎟ .

Exercise 10A (Page 232)

  1 (i) (a) 2i � 8j

  (b) 68

  (c) 3i � 7j

 (ii) (a) �4i � 3j

  (b) 5

  (c) 2i � 1.5j

 (iii) (a) 6i � 8j

  (b) 10

  (c) i � 3j

 (iv) (a) 6i � 8j

  (b) 10

  (c) 0

 (v) (a) 5i � 12j

  (b) 13

  (c) �7.5i � 2j

  2  Note: These answers are not 
unique.

 (i) r " 
2
1

1
2

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟λ

 (ii) r " 
3
5

1
1

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟λ –

 (iii) r " 
−⎛

⎝⎜
⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟

6
6

1
1–

λ

 (iv) r " 5
3

1
1

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜
⎞
⎠⎟λ

 (v) r " λ 2
1

⎛
⎝⎜

⎞
⎠⎟

 (vi) r " λ –1
4

⎛
⎝⎜

⎞
⎠⎟

 (vii) r " λ –1
4

⎛
⎝⎜

⎞
⎠⎟

 (viii) r " 
3

12
1
4–

–⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟λ

  3  Note: These answers are not 
unique.

 (i) r " 
2
4
1

3
6
4–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

 (ii) r " 
1
0
1

1
0
0–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

 (iii) r " 
1
0
4

5
3
6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ
–

 (iv) r " 
0
0
1

2
1
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

 (v) r " λ
1
2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  4 (i) Yes, λ = 2

 (ii)  Yes, λ = −1

 (iii)  No 

 (iv)  No  

 (v)  Yes, λ = −5

  5 (i)  r =
−
−

⎛

⎝
⎜

⎞

⎠
⎟ +

−

−

⎛

⎝
⎜

⎞

⎠
⎟

1
2
1

1
3
3

λ

  or r =
−
−

⎛

⎝
⎜

⎞

⎠
⎟ +

−

−

⎛

⎝
⎜

⎞

⎠
⎟

1
2
1

2
6
6

λ

 (ii)   (–2, 1, –2)

 (iii)  r =
−

−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟

2
1
2

0
1
0

λ

Exercise 10B (Page 238)

  1 (i) 4
1

⎛
⎝⎜

⎞
⎠⎟

 (ii) 5
5

⎛
⎝⎜

⎞
⎠⎟

 (iii) 12
17
⎛
⎝⎜

⎞
⎠⎟

 (iv) –5
6

⎛
⎝⎜

⎞
⎠⎟
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P3  (v) 6
3

⎛
⎝⎜

⎞
⎠⎟

  2 (i) Intersect at (3, –2, 5) 

 (ii) Parallel

 (iii) Intersect at (3, 2, –13)

 (iv) Intersect at (1, 2, 7)

 (v) Skew

 (vi) Intersect at (4, –7, 11)

 (vii) Skew

  3 (i) 12.8 km

 (ii) 20 km h�1, 5 km h�1

 (iii)  After 40 minutes there is a 
collision.

  4 (i) O
�q

L " 10
45.

⎛
⎝⎜

⎞
⎠⎟

; O
�q

M " 7
35.

⎛
⎝⎜

⎞
⎠⎟

; 

  O
�q

N 
�
" 4

1
⎛
⎝⎜

⎞
⎠⎟

 (ii) AL: r " 1
0

2
1

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟λ ;    

  BM: r " 7
2

0
1

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟µ ;

  CN: r " 13
7

3
2

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ν

 (iii) (a) (7, 3)

  (b) (7, 3)

 (iv)  The lines AL, BM and CN 
are concurrent. (They are 
the medians of the triangle, 
and this result holds for the 
medians of any triangle.)

  5 (–2, –6, –1); 30 units

  6 No

  7 6 units, 9 units, 77  units

  8 (i) 
– .025
0
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (ii) (0, 0.05, 1.1)

 (iii) DE:  r " 
0
0
1

1
0
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

  EF:  r " 
025
0
1

0
1
2

.⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

Exercise 10C (Page 242)

  1 53.6°

  2 81.8°

  3 8.72°

  4 35.3°

  5 61.0°

  6 (i) A(4, 0, 0), F(4, 0, 3)

 (ii) 114.1°, 109.5°

 (iii)  They touch but are not 
perpendicular.

  7 (ii) 5i + 3j + 4k

Exercise 10D (page 245)

  1 (i) (a) (–2, 6, 7)

  (b)  29 units

 (ii) (a)  (3, –1, 7)

  (b)  17 units

 (iii) (a)  (2, 7, –3)

  (b)  7 units

  2 2 10 units

  3 35 units

  4 (i) (0, 4, 3)

 (ii) 
–

,
5
4
3

50
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (iii) r " 
5
0
0

5
4
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ
–

 (iv) 
3

1

3
4

3
4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, 63.4°

 (v)  Spider is then at 
P(2.5, 2, 1.5) and 

  O
�q

P .  A
�q

G " 0, a O
�q

P a " 3.54

  5 (i) (1, 0.5, 0)

 (ii) 41.8°

 (iii) 027°

 (iv) (2, 2.5, 2)

 (v) t " 2, 5  km

●? (Page 247)
A three-legged stool is the more 
stable. Three points, such as the 
ends of the legs, define a plane but a 
fourth will not, in general, be in the 
same plane. So the ends of the legs 
of a three-legged stool lie in a plane 
but those of a four-legged stool need 
not. The four-legged stool will rest 
on three legs but could rock on to a 
different three.

●? (Page 250)
(i) 90° with all lines.

(ii)  No, so long as the pencil remains 
perpendicular to the table.

Activity 10.3 (Page 255)

Repeat the work in Example 10.13 
replacing (7, 5, 3) by (α, β, γ), so 7 
by α, 5 by β and 3 by γ; and (3, 2, 1) 
by (n1, n2, n3) and 6 by d. 

Exercise 10E (Page 257)

  1 (i) Parallel, line in plane

 (ii) Parallel, line not in plane

 (iii) Not parallel

 (iv) Parallel, line in plane

 (v) Not parallel

 (vi) Parallel, line not in plane

  2 (i) L
�q

M " 
2
2
2–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

; L
�q
N " 

5
2
1–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (iii) x � 4y � 3z " �2

  3 (iii) B

  4 (iii) Three points define a plane.

 (iv) (1, 0, �1)

  5 (i) (0, 1, 3)

 (ii) (1, 1, 1)

 (iii) (8, 4, 2)

 (iv) (0, 0, 0)

 (v) (11, 19, �10)
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P3   6 (i) (a) r " 
2
2
3

1
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ –

  (b) (1, 3, 1)

  (c) 6

 (ii) (a) r " 
2
3
0

2
5
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

  (b) (1, 0.5, –1.5)

  (c) 3.08

 (iii) (a) r " 
3
1
3

1
0
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

  (b) (0, 1, 3)

  (c) 3

 (iv) (a) r " 
2
1
0

3
4
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ –

  (b) (2, 1, 0): A is in the plane

  (c) 0

 (v) (a) r " λ
1
1
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  (b) (2, 2, 2)

  (c) 12

  7 (i) x � 2y � 3z " 25

 (ii) 206 " 150 � 56

 (iii)  W is in the plane; 

U
�q

W�. U
�q

V� " 0

  8 (i) r " 
13
5
0

3
1
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ
–

 (ii) (4, 2, 6)

 (iii) 11.2

  9 (i) 4.1°

   (ii) 32.3°

 (iii) 35.6°

10 (ii) A
�q

B  " 
–1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

; A
�q

C " 
8
4
1

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

; 

  in both cases the scalar 
  product " 0

 (iii) 132.9°

 (iv) 8.08

11 (i) 5, 89

 (ii) 62.2°

 (iii) 20.9

 (iv) (4, 6, �3)

12 (i) PQ: r " 
2
2
4

1
2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ
–

; 

  XY: r " 
–
–
–

2
2
3

1
2
3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

µ

 (iii) Yes

 (iv) Yes, (1, 4, 6)

13 (ii) 
2
1
3

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (iii) (10, �5, 15)

 (iv) OA: r " λ
5

12
16

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

;    

  AB: r " 
5

12
16

1
5
1

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

µ

 (v) 69°

14 (i) 
2
3
4

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (ii) r " 
3
8

12

2
3
4

– –
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ ;   

  (�1, �2, 4)

 (iii) (0, �3.5, 6)

 (iv) 15.6° (1 d.p.)

15 (i) 2x � 3y � 7z " �5

 (ii)  r "  (130i � 40j � 20k) � 
λ(8i � 4j � k)

 (iii) 10i � 20j � 5k

 (iv) 135 m

16 (i) r " 
2
3
5

1
1
05

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ
– .

 (ii) (12, 13, 0)

 (iii) 109.5° (1 d.p.)

 (iv) 25 m

17 (i) (3, 1, 0)

 (ii) 63.4s

 (iv) r " 
1
1
1

1
2
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

 (v) 5
3

7
3

7
3

, ,( ) or 1
3

1
3

1
3

, – , –( )
18 (i) b " �2, c " 3

19 (ii) 6x � y ��8z " 6

20 (i) r " 
–1
3
5

3
1
4

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ −

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

λ

 (ii) r " 
5
1
3−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (iii) 7x � 11y ��8z = 0

21 (i) 3i � 2j � k

 (ii) 72.2°

 (iii) r " 3i � 2j � k � λ(6i � 2j ��k)

●? (Page 265)
π3 is parallel to π1 and π2 
(the common line is at infinity).

Exercise 10F (Page 265)

 1 (i) r " 
3
1
0

15
27

7

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟λ

 (ii) r " 
0
3
5

0
0
4

−
⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟λ

 (iii) r " 
0
1
1

16
15
13

−
−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟λ

 (iv) r " 
2
0
4

11
4

21

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟λ

 2 (i) 56.5°  

 (ii) 80.0°  

 (iii) 24.9°  

 (iv) 63.5°

 3 (i) r " 
−⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟

2
3
5

0
0
1

λ

 (ii) r " 
4
3
2

3
2
6

−
⎛

⎝
⎜

⎞

⎠
⎟ +

−

⎛

⎝
⎜

⎞

⎠
⎟λ
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P3  4 41x � 19y � 26z " 33

 5 x � 3y � z " �8

 6 r " 
4
2
7

21
4

11
−
−

⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟λ

 7  60x � 11y � 100z " 900; 
 60x � 11y � 100z " �300;

 r " 
5
0
6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 � t 
0

100
11–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

; 6.3°

 8 (i) x � 3z " �800

 (ii)  Normal is approx. 18.4° to 
the horizontal

 (iii)  14x � 15y � 3450z 
" 15 950

 (iv)  x " 15λ, 
y " �1136λ � 62 396.7, 
z " �5λ � 266.7

 (v)  62 km (assuming seam is 
sufficiently extensive)

9 (i)  r "  (2i � 3j � 5k) � 
λ(3i � j � 2k)

 (ii) λ " 1; (5, 4, 3)

 (iii) (9.5, 5.5, 0)

 (iv) (6.5, 4.5, 2); 1.87 (3 s.f.)

 (v) i � 2j " 3k; 38.2° (1 d.p.)

10 (i) 
a
b
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (ii) A
�q

B " 

2
3
0

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ ;  �A

�q
C " 

3
5
1

–
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (iii) 2a � 3b " 0;    3a � 5b � 1 " 0

 (iv) 3x � 2y � z " 6

 (v) 36.7° (1 d.p.)

 (vi) 3 3 22
3

2
3

1
3, – ,( )

11 (i) (6, 4.5, 3)

 (iii) x � 2z " 0

 (iv)  AOBC: 
0
2
3–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

;  DOBE: 
1
0
2–

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

;

  41.9° (1 d.p.); 138.1°

12 (i) a " �2

 (ii) 3

13 (i) 4x � 2y � z " 8

 (ii) 77.4°

14 (i) 57.7°

 (ii) r = 2i – k + λ(4i – 7j + 5k)

15 (i) 2x – 3y + 6z = 2

 (ii) 2

 (iii) r = λ(6i + 2j – k)

Chapter 11

Activity 11.1 (Page 272)

Activity 11.2 (Page 272)

(i) Positive integer

(ii) Rational number

(iii) Irrational number

(iv) Negative integer

(v) Zero, negative integer

(vi) No real number is possible

Activity 11.3 (Page 273)

z "  3 � 7i

¡�z2 � 6z � 58 

     " (3 � 7i)2 � 6(3 � 7i) � 58

     " 9 � 42i � 49i2 � 18 � 42i � 58

     " 9 � 42i � 49 � 18 � 42i � 58

     " 0

●? (Page 274)
i3 " �i, i4 " 1, i5 " i

All numbers of the form 

 ● i4n are equal to 1

 ● i4n�1 are equal to i

 ● i4n�2 are equal to �1

 ● i4n�3 are equal to �i.

Activity 11.4 (Page 275)

(i)  (a) 6

 (b) 2

 (c) 34

 (d) 5

 They are all real.

(ii) z � z* " (x � iy) � (x � iy) " 2x 

  zz* " (x � iy)(x � iy) 

        " x2 � ixy � ixy � i2y2

        " x2 � y2 

  These are real for any real values 
of x and y.

Exercise 11A (Page 275)

1 (i) 14 � 10i

 (ii) 5 � 2i

 (iii) �3 � 4i

 (iv) �1 � i

 (v) 21

 (vi) 12 � 21i

 (vii) 3 � 29i

 (viii) 14 � 5i

 (ix) 40 � 42i

 (x) 100

 (xi) 43 � 76i

 (xii) �9 � 46i

2 (i) �1 ± i

 (ii) 1 ± 2i

 (iii) 2 ± 3i

 (iv) �3 ± 5i

Negative
integers

U

U

Positive
integers

Rational numbers

zero

Irrational numbers

Real numbers

–13

–1.4142 355
113

–   2

0 3–1

355
113–1.4142–   2
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P3  (v) 1
2 ± 2i

 (vi) �2 ± 2 i

3 (i) 2i

 (ii) 5i and –3i

 (iii) 1 + i and –1 + i

 (iv) 2 – 3i and –2 – 3i

 (v) –1 – 4i and 1 – 4i

 (vi) –3i and 2i

4 (i) 2

 (ii) �4

 (iii) 2 � 3i

 (iv) 6 � 4i

 (v) 8 � i

 (vi) �4 � 7i

 (vii) 0

 (viii) 0

 (ix) �39

 (x) �46 � 9i

 (xi) �46 � 9i

 (xii) 52i

●? (Page 276)

Yes, for example 2
3

4
6" , although 

2 |�4 and 3 | 6.

Activity 11.5 (Page 277)

1
x y� i  

" p � iq 

¡�(p � iq)(x � iy) " 1

�¡�px � ipy  � iqx  � iqy2 " 1

¡�(px � qy) � i(py � qx) " 1

px � qy " 1 and py � qx " 0

Solving simultaneously gives 

p " x
x y2 2�

, q " 
–y

x y2 2�

so 1
2 2x y

x y
x y+ = −

+i
i

●? (Page 279)

1
i  

" �i, 1
2i  

" �1, 13i  
" i

All numbers of the form 

 ●
1
4i n are equal to 1

 ●
1

4 1i n�  are equal to –i

 ●
1

4 2i n�  are equal to –1

 ●
1

4 3i n�  are equal to i.

Exercise 11B (Page 279)

  1 (i) 
3

10
1

10– i

 (ii) 6
37

1
37� i

 (iii) – 1
4

3
4� i

 (iv) 4
5

11
10� i

 (v) 5
2

1
2– i

 (vi) 7 � 5i

 (vii) �i

 (viii) 11
25

27
25– i

 (ix) 7
29

32
29� i

 (x) –1 – 3
2i

  2 (i) a " 5, b " 2

 (ii) a " 3, b " �7

 (iii) a " 2, b " �3

 (iv) a " 4, b " 5

 (v) a " 5
4
, b " �3

4

 (vi) a " 1
2

, b " 1
2

  3 a " 2, b " 2

  4 (i) z " 2 � i 

 (ii) z " 3 � i

 (iii) z " 11 � 10i

 (iv) z " –35 149
34
� i

  5 0, 2, �1 ± 3 i

  6 
2

2 2
x

x y�

  8 (i) a3 � 3ab2 � (3a2b � b3)i

 (iii) z " 1, �1
2

1
2

3± i

  9 (i)  (z � α)(z � β) 
" z2 � (α � β)z + αβ

 (ii) (a) z2 � 14z � 65 " 0

  (b) 9z2 � 25 " 0

  (c) z2 � 4z � 12 " 0

  (d) z2 � (5 � 3i)z � 4 � 7i " 0

10 (i) 3i and –3i

 (ii) 2 + i and –2 – i

 (iii) 3 + 5i and –3 – 5i

 (iv) 3 – 4i and –3 + 4i

 (v) 5 – 2i and –5 + 2i

 (vi) 2 – 3i and –2 + 3i

Activity 11.6 (Page 281)

(i)  Rotation through 180° about the 
origin

(ii) Reflection in the real axis

●? (Page 281)
z and �z* (or �z and z*) are 
reflections of each other in the 
imaginary axis.

Activity 11.7 (Page 283)

(i)

(ii)

O 5e

Im
]2

]1

]2 ± ]1

O 5e

Im

]1]1

±]2

]1 � �±]2�
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P3 Exercise 11C (Page 283)

  1 

 (i) 13

 (ii) 4

 (iii) 26

 (iv) 2

 (v) 61

 (vi) 5

  2 

  3 Points:

 (i) 10 � 5i

 (ii) 1 � 2i

 (iii) 11 � 7i

 (iv) 9 � 3i

 (v) �9 � 3i

  4 (i) 5

 (ii) 13

 (iii) 65

 (iv) 5
13

 (v) 13
5

                      �����z ������������a�z a����������w �������� � a�w a
� a�zw a�"�a�z aa�w a,²––²"�––, ²––²�" ––
� ������������������������������������������� ����w ����������a�w a ���������z ��������� ���a�z a�

  5 (i) z�1 " 1
2

1
2

– i , a�z�1 a�" 1
2

  z0 " 1, a�z0 a�" 1

  z1 " 1 � i, a�z1 a�" 2

  z2 " 2i, a�z2 a�" 2

  z3 " �2 � 2i, a�z3 a�" 2 2

  z4 " �4, a�z4 a�" 4

  z5 " �4 � 4i, a�z5 a " 4 2

 (ii) 

 (iii)  The half-squares formed are 

enlarged by 2 and rotated 

through U
4

 each time.

6  Half a turn about O followed 
by reflection in the x axis is the 
same as reflection in the x axis 
followed by half a turn about O.

●? (Page 284)
a�z2 � z1 a is the distance between the 
points representing z1 and z2 in the 
Argand diagram.

●? (Page 285)

(i) 

(ii) 

(iii) 

●? (Page 286)

(i) 

(ii) 

O–2 5e

Im

±� � i 3 � 2i

�i

±� ± �i

� ± 3i

O 5e

Im

i]* i]

�i]�*

]*±]

±i]

±]*
]

5e

Im

3 + 4i

O

Im

Re

3 + 4i

O

Im

Re

3 + 4i

O

Im

Re

3 + 4i

O

Im

Re

–1 + 2i

3 + 4i

O

Im

Re

–1 + 2i
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P3 (iii) 

Exercise 11D (Page 286)

  1 (i) 

 (ii) 

 (iii) 

  
 
 

 (iv) 

  

 (v) 

  

 (vi) 

  

      

       

Im

ReO

–2 – 4i

 (vii)   

 

(viii) Im

Re–2 O

  2 

 a�z a is least at A and greatest at B.

� a12 � 5i a " 144 25�  " 13

 At A, a�z a " 13 � 7 " 6

 At B, a�z a " 13 � 7 " 20

  3 (i) 

 (ii) 7, 13

  4 Not possible

  5 (i) 

 (ii) 

3 + 4i

O

Im

Re

–1 + 2i

Im

ReO

2

Im

ReO 4

Im

Re

O

5i

Im

Re

O

–3 + 4i

Im

ReO

6 – i

Im

ReO

1 – i

Im

ReA

12 – 5i

B

O

–2

–4

–6

–8

2 4

5 – 4i

6 8

Im

Re

Im

Re4O 2

Im

ReO

i

2i
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P3  (iii) 

 

 

 

 (iv) 

●? (Page 288)

(i) U
2

(ii) –3
4
U

(iii) –U
4

Activity 11.8 (Page 288)

(i) (a) 45°

 (b) 63.4°

 (c) 89.4°

 (d) �63.4°

 (e) �88.9°

 (f) �89.7°

 �90° " tan�1 x " 90° 

(ii) –U
2

 " tan�1 x " U
2

Activity 11.9 (Page 289)

arg(1 � i) " U
4

, 

arg(1 � i) " �U
4, 

arg(�1 � i) " 3
4
U, 

arg(�1 � i) " �3
4
U

●? (Page 290)
(i) 2(cos (π � α) � i sin (π � α))

(ii) 2(cos (�α) � i sin (�α))

Activity 11.11 (Page 290)

UU
4

UU
6

UU
3

tan 1
1
3

3

sin
1
2

1
2

3
2

cos
1
2

3
2

1
2

Exercise 11E (Page 291)

  1 (i) r " 8, θ " U
5

 (ii) r " 14, θ " 2.3

 (iii) r " 4, θ " ���U
3

 (iv) r " 3, θ " π – 3

  2 (i) r " 1, θ " 0, 
  z " 1(cos 0 � i sin 0)

 (ii) r " 2, θ " π, 
  z " 2(cos π � i sin π)

 (iii) r " 3, θ " U
2

, 

  z " 3(cos 
U
2

 � i sin 
U
2)

 (iv) r " 4, θ " �U
2 , 

  z " 4(cos (�U
2 ) � i sin (�U

2))
 (v) r " 2, θ " U

4
, 

  z " 2(cos 
U
4

 + i sin 
U
4)

 (vi) r " 5 2, θ " �3
4
U, 

  z " 5 2(cos (�3
4
U) � i sin (�3

4
U))

 (vii) r " 2, θ " �U
3

, 

  z " 2(cos (��U
3) � i sin (��U

3))
 (viii) r " 12, θ " U

6
, 

  z " 12(cos 
U
6

 � i sin 
U
6 )

 (ix)  r " 5, θ " �0.927, 
z = 5(cos(�0.927) 
   � i sin(�0.927))

 (x)  r " 13, θ " 2.747, 
z "  13(cos 2.747 

� i sin 2.747)

 (xi)  r " 65, θ " 1.052, 

z "� 65(cos 1.052 
� i sin 1.052)

 (xii)  r " 12013, θ " �2.128, 

  z =  12013(cos (�2.128)

� i sin (�2.128)

  3 (i) z " 2i

 (ii) z " 32
3 3

2
� i

 (iii) z " –7 3
2

7
2

� i

 (iv) z " 1
2

1
2

– i

 (v) z " – –5
2

5 3
2

i

 (vi) z " �2.497 � 5.456i

  4 (i) α � π

 (ii) �α

 (iii) π � α

 (iv) U
2 � α

 (v) U
2

 � α

  5 (ii) Real part = 1
2

  6 (i) 

 (ii) Real part = 1
4

  7 (i) (a) 2 + i

  (b) r = 5, θ = 0.464 

 (ii) �3 ��2i and 3 ��2i

Im

Re
1 – i

–1 + i

O

Im

ReO

2 + 6i

–5 – 7i

O

1

2

4

–1 1 2 3–2–3

Im

Re

3

–1

–2
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P3   8 (i) 

  OACB is a rhombus.

 (ii) 3
5

4
5

� i

●? (Page 293)
arg(z1 � z2) is the angle between 
the line joining z1 and z2 and a line 
parallel to the real axis.

Exercise 11F (Page 294)

  1 (i) 

 

 
 
 
 
 
 
 (ii) 

 (iii) 

 (iv) 

 (v) 

 (vi) 

  2 U U
3

2
3

,

  3 (i) 2
3
U, 2

 (ii) 

 (iii) 12

 4 (i) r = 1, θ = 
2
3U

 (ii) wz: modulus = R, 

  argument = θ + 2
3U

  
z
w: modulus = R, 

  argument = θ – 2
3
U

 (iii)  The three points are the 

same distance from the

origin and separated by 

equal angles of 
2
3
U

 (i.e. 120°).

 (iv) –(2 + 3) + (2 3 – 1)i 

  –(2 – 3) – (2 3 + 1)i

  5 (i) 2 + i and –2 + i 

 (ii) 2 + i: r = 2.24, 
  θ = 0.464 radians 

  –2 + i: r = 2.24, 
  θ = 2.68 radians

 (iii) 

  6 (i) 1 3 1 3� � �i, i

 (ii) 

 (iii) 1 3� i:: r = 2, θ = −π
3

  � �1 3i:: r = 2, θ = −2
3
π

 (iv)  The three points are the 

same distance from the

origin and separated by 

equal angles of 
2
3
U

 (i.e. 120°).

  7 (i) (a) 1 + 2i

  (b) – 1
2

 + 1
2 i

 (ii) 3
4
U

 (iv)  OA = BC and OA and BC 
are parallel

Im

Re
O

1 2 3 4 5
–1

–2

1

2
A

C

B

3

Im

ReO –U
  3

Im

4i

ReO

Im

ReO–3

Im

ReO

–1 – 2i

Im

Re
3 – i

O

–U
   6

Im

Re

–5 + 3i

O

–U
  4

U
3

U

Im

ReO

3

4

w

3

2
3

2

–

–3

Im

ReO–1–2 1 2 3
–1

–2

1

2

3

Im

ReO 1–1–2–3 2 3
–1

–2

1

2



A
n

sw
er

s

338

P3   8 (i) u: r = 2, θ = – 3
4U

  u2: r = 2, θ = 1
2
U

 (ii) 

Activity 11.12 (Page 296)

(i) Rotation of vector z 

 through +π2

(ii) Half turn of vector z

 (

– )

=
= ×

two suc essive rotations:

i i

c
π
2

1

●? (Page 299)
3 � i and �3 � i

Exercise 11G (Page 301)

  1 (i) 32 0 6 0 6(cos . sin . )� i

 (ii) 2 0 2 0 2(cos( . ) sin( . ))− + −i

 (iii) 12(cos π π
2 2
+ isin )

 (iv) 3(cos π π
6 6
+ isin )

 (v) 24(cos 5
4

5
4

π π+ isin )
 (vi) 6(cos 3

4
3
4

π π+ isin )
  2 (i) 6(cos 7

12
7
12

π π+ isin )
 (ii) 3

2(cos π π
12 12

+ isin )
 (iii) 

2
3 12 12

cos – π π+⎡
⎣⎢

⎤
⎦⎥

isin –

 (iv) 1
2 4 4

cos – –
π π+⎡

⎣⎢
⎤
⎦⎥

isin

 (v) 9(cos 2
3

2
3

π π+ i sin )

 (vi) 

        32 3
4

3
4

cos – π π+⎡
⎣⎢

⎤
⎦⎥

isin –

 (vii) 432(cos 0 + i sin 0)

 (viii) 10( cos 3
4

3
4

π π+ isin )
 (ix) 3 2(cos 7

12
7
12

π π+ isin )
  3 Exceptions

 (i) if z = 0 then 1
z  

does not exist

 (iii)  if z = real and negative then 

arg 1
z( )  = arg z

  4 (i) Enlarge from O w3

 (ii) Enlarge from O w2 and 

  rotate +π
2

 (iii)  Complete the parallelogram 
3z, 0, 2iz

 (iv) Reflect in the real axis

 (v)  Find where the circle with 
centre O through z meets the 
positive real axis

 (vi)  Complete the similar 
triangles 0, 1, z and 0, z, z2

  5
 

  6 (ii) U U
4

5
6

,

 (iii) 8 11
12

,− π

 (iv)  Perpendicular bisector 
of line from α to β

 (v) 13
24

U

7 (i) –1

 (ii) 
1

2
� i

 (iii) –1.209 +0.698i

 (iv) –13.129 + 15.201i

8 (i) (a) 10ei

  (b) 4

   (c) 6e8i

  (d) 3ei

  (e) 3e3i

  (f) 4e i�

 (ii) (a) 2 3 3
5 2 2
10 1 1

(cos sin )
(cos( ) sin( ))

(cos sin

+
× − + −
= +

i
i

i ))

  (b) 8 5 5
2 5 5
4

(cos sin )
(cos sin )

+
÷ +
=

i
i

  (c) 3 7 7
2 1 1
6 8 8

(cos sin )
(cos sin )
(cos sin )

+
× +
= +

i
i
i

  (d) 12 5 5
4 4 4
3 1 1

(cos sin )
(cos sin )
(cos sin )

+
÷ +
= +

i
i
i

  (e) 3 2 2
1 1

3 3 3

(cos sin )
(cos sin )

(cos sin )

+
× +
= +

i
i

i

  (f) 8 3 3
2 4 4
4 1 1

(cos sin )
(cos sin )
(cos( ) sin( ))

+
÷ +
= − + −

i
i

i

Exercise 11H (Page 304)

  1 2 – i, –3

  2 z = 7, 4  ±��2i

  3 p = 4, q = –10, 
 other roots 1 + i, –6

  4 z = 3 ± 2i, 2 ± i

  5 z = ±3i, 4 ±�� 5

  6 (i) w2 = –2i, w3 = –2 – 2i, 
  w4 = –4

 (ii) p = –4, q = 2

 (iii) two of 1 – i, 1 + i, –1, –4

–4

–3

4

u2

u

3

Im

Re
O

1–1–2–3–4 2 3 4
–1

–2

1

2

( ) ( )

( ) ( )

( ) ( )

3 1
4

3 1
4

2 3
4

3
4

10
3 3

− +

+( )
+( )

, ;

cos sin ,

cos sin

π π

π π

i

i ;; 3 1
2 2
+

–4
–3

4
3

Im

Re
O

1–1–2–3–4–5–6 2 3 4 5 6
–1
–2

1
2

α

αβ

β
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P3   7 (i) a2 = –3 – 4i, a3 = 11 – 2i

 (ii) –1 – 2i, –5

 (iii) – 5  = 5, arg(–5) = π

 – ,1 2 5+ =
( )

i

arg –1 + 2i = 2.03

 

– ,1 2 5+ =

( )
i

arg –1 +2i = 2.03

  8 (i) β = –1 + 3 i, γ= –1 – 3 i

 (ii) 1 1
4

3
4

1 1
4

3
4β γ

= − − = +i, i–

 (iii) α α= =4, arg π

  
β β= =2 2

3
, arg π

  
γ γ= = −2 2

3
, arg π

 (iv) 

  9 (i) α2 = –15 + 8i, 

  α3 = –47 – 52i

 (ii) k = 3

 (iii) –7, 1 – 4i

  arg (1 + 4i) = 1.326

  arg (–7) = π

  arg (1 – 4i) = –1.326

 (iv) c = 5

10 (i) α2 = –8 – 6i, α3 = 26 – 18i

 (ii) µ = 20

 (iii) z = – 2
3 , –1 ± 3i

  
– , arg –2

3
2
3

2
3= ( ) = π

  
– ,

arg – .

– ,

arg – .

1 3 10

1 3 1893

1 3 10

1 3 1

+ =
+( ) =

+ =
+( ) =

i

i

i

i 8893

11 (i) β = –2 + 2 3i, 

  γ = –2 – 2 3i

 (ii) α α= =

= =

= =

= ( ) =

3 0

4 2
3

4 2
3

1

, arg

, arg

, arg

, arg

β β

γ γ

β
γ

β
γ

π

π

––2
3
π

 

12 (ii) 1 – 2i

 (iii) 

Im

ReO

2

–2

–1–5

L –1 + 2i

–1 – 2i

5
2

–

Im

ReO

α

–4

1
α

1
β

β

Im

ReO

5

–5

–2–7

1 + 4i

1 – 4i

4

–4

1 3

Im

ReO

3

–3

–1

–1 + 3i

–1 – 3i

2
3

–

Im

Re

O

3

3

3

β

–2

2

–2

–1
–1

β

α

Im

O 1 Re

2
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